Modeling Global Syntactic Variation

(in English) (using Dialect Classification)

Jonathan Dunn jonathan.dunn@canterbury.ac.nz www.jdunn.name

Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

<u>Goals</u>

(i) Identify dialects with syntax features

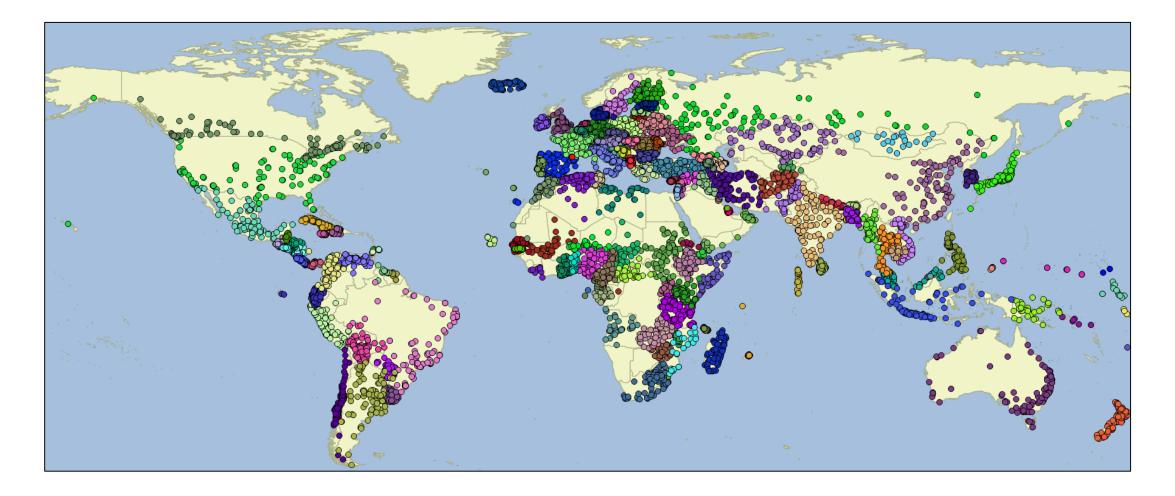
(ii) Explore grammar adaptation for dialects

(1) Finding national dialects of English

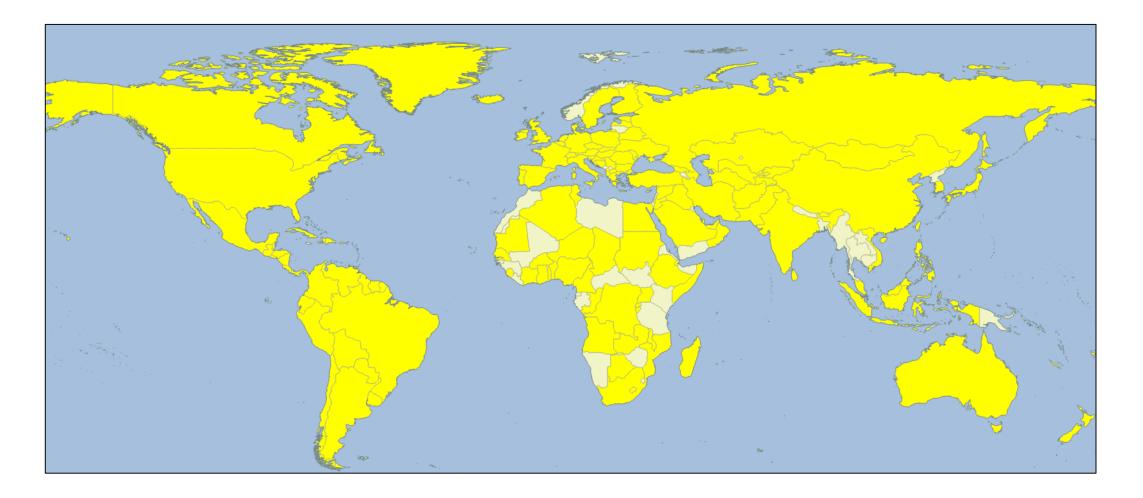
(2) Finding syntactic variants in English

(3) Modeling dialects using classification

Countries in the World

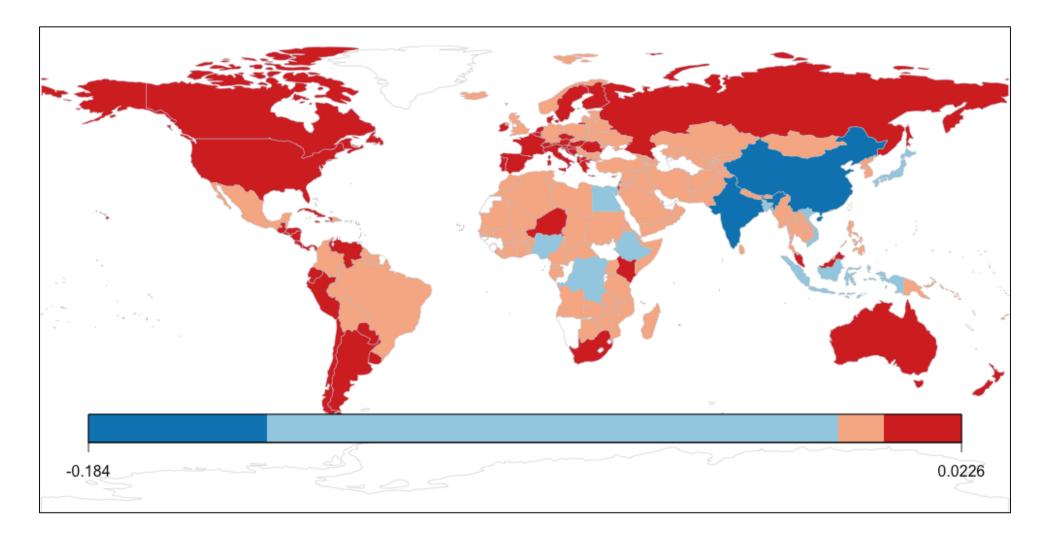


Twitter Collection by City

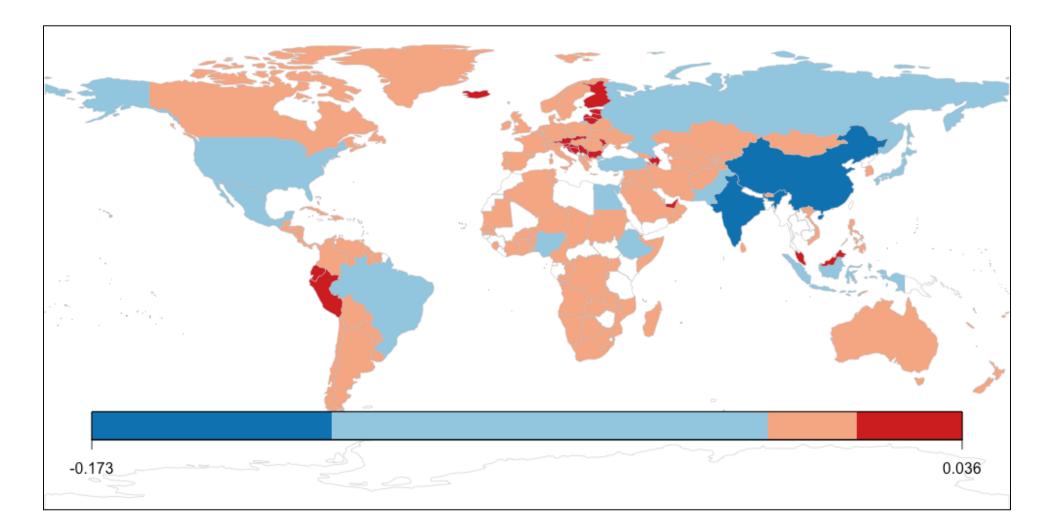


Web Collection from the Common Crawl

Region	Population	Twitter	Common Crawl
Africa, North	3%	2%	0.7%
Africa, Southern	1%	2%	0.4%
Africa, Sub-Saharan	10%	6%	2%
America, Brazil	2%	2%	1%
America, Central	2%	9%	5%
America, North	4%	8%	1%
America, South	2%	9%	7%
Asia, Central	2%	2%	5%
Asia, East	22%	2%	13%
Asia, South	23%	8%	2%
Asia, Southeast	8%	5%	12%
Europe, East	2%	7%	27%
Europe, Russia	2%	2%	0.6%
Europe, West	5%	19%	14%
Middle East	4%	5%	4%
Oceania	1%	5%	1%
TOTAL	7.35 billion (People)	4.14 billion (Words)	16.65 billion (Words)



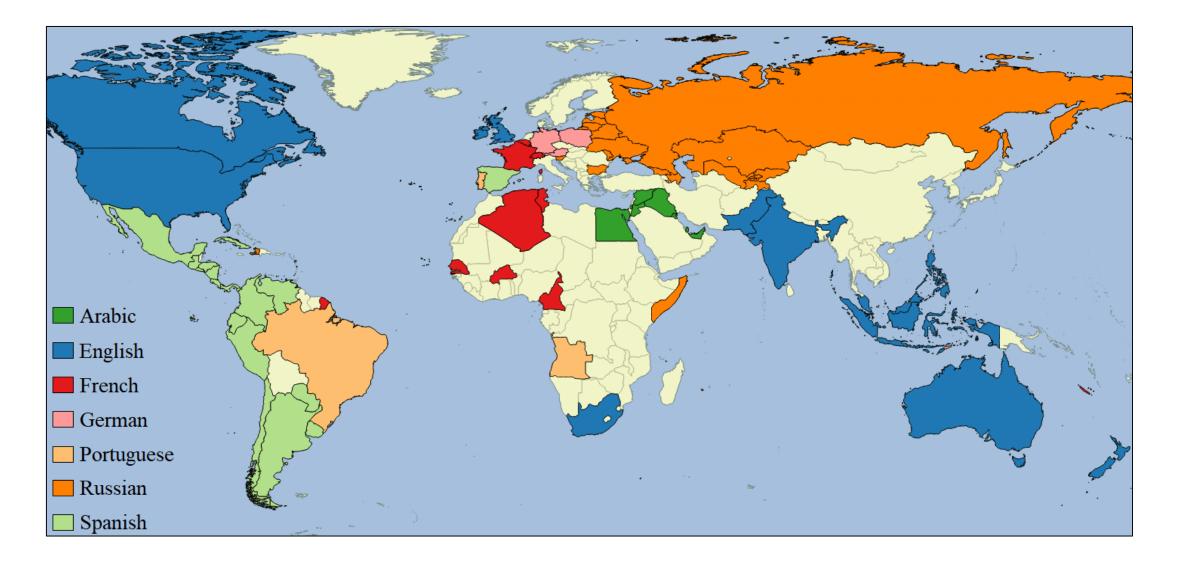
Population-to-Corpus Comparison, Twitter



Population-to-Corpus Comparison, Common Crawl

Country	Twitter (Words)	Common Crawl (Words)	Circle
(au) Australia	29.1 mil	98.9 mil	Inner
(ca) Canada	149.8 mil	97.8 mil	Inner
(ie) Ireland	43.9 mil	46.0 mil	Inner
(nz) New Zealand	87.9 mil	37.4 mil	Inner
(uk) United Kingdom	62.8 mil	43.3 mil	Inner
(us) United States	42.8 mil	220.9 mil	Inner
(in) India	71.2 mil	80.0 mil	Outer
(my) Malaysia	198.5 mil	18.2 mil	Outer
(ni) Nigeria	113.9 mil	29.3 mil	Outer
(ph) Philippines	209.4 mil	19.7 mil	Outer
(pk) Pakistan	140.1 mil	34.0 mil	Outer
(za) South Africa	53.4 mil	57.0 mil	Outer
(ch) Switzerland	15.4 mil	17.7 mil	Expanding
(pt) Portugal	20.9 mil	23.3 mil	Expanding
TOTAL	1.23 billion	0.82 billion	

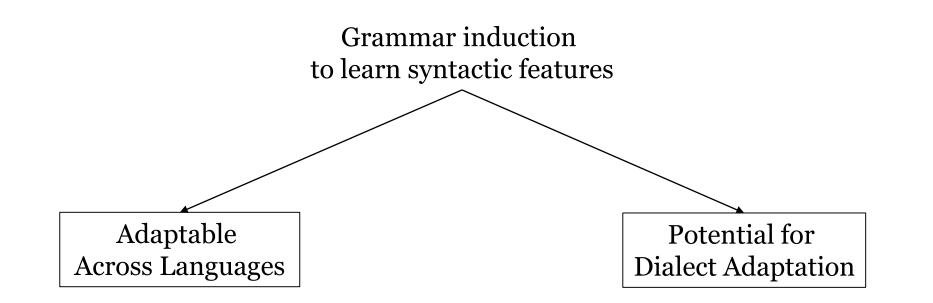
English Data by Source



(1) Finding national dialects of English

(2) Finding syntactic variants in English

(3) Modeling dialects using classification



Computational Construction Grammar

Computational Construction Grammar

CxG represents grammar using constraint-based *constructions*

Computational Construction Grammar

CxG represents grammar using constraint-based constructions

Each construction is made up of <u>slots</u>,

Computational Construction Grammar

CxG represents grammar using constraint-based *constructions*

Each construction is made up of <u>slots</u>, each of which is defined by a *constraint*

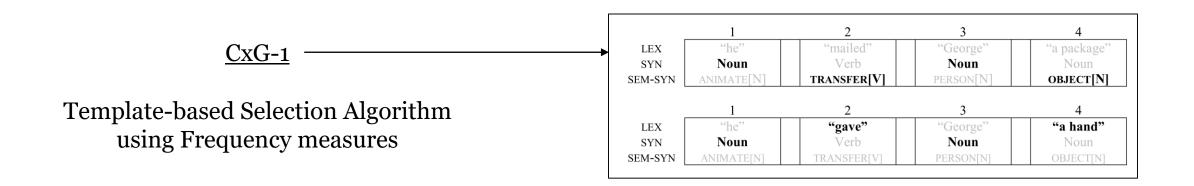
Computational Construction Grammar

CxG represents grammar using constraint-based *constructions*

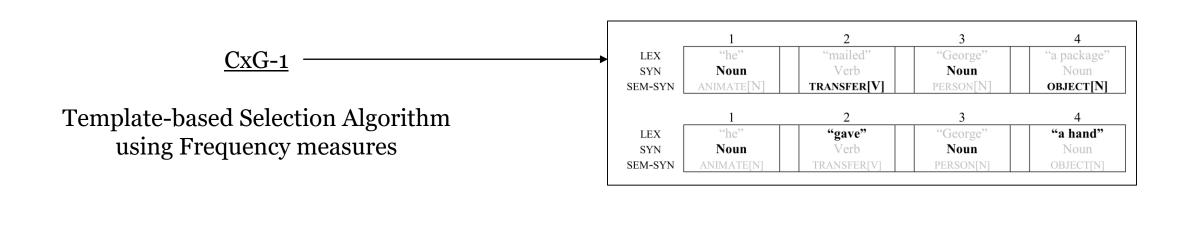
Each construction is made up of <u>slots</u>, each of which is defined by a *constraint*

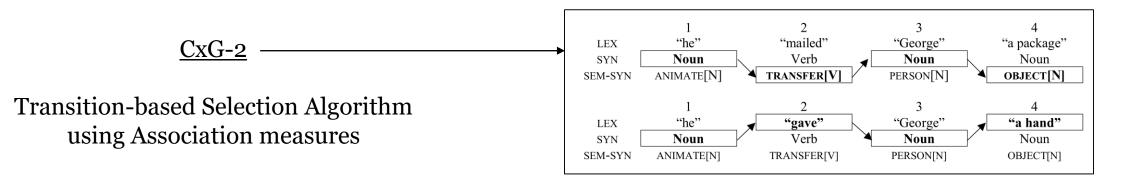
(1a) [SYN:NOUN — SEM-SYN:TRANSFER[V] — SEM-SYN:ANIMATE[N] — SYN:NOUN]
(1b) "He gave Bill coffee."
(1c) "He gave Bill trouble."
(1d) "Bill sent him letters."
(2a) [SYN:NOUN — LEX:"give" — SEM-SYN:ANIMATE[N] — LEX:"a hand"]
(2b) "Bill gave me a hand."

Poster @ CMCL today, 2:30-3:30



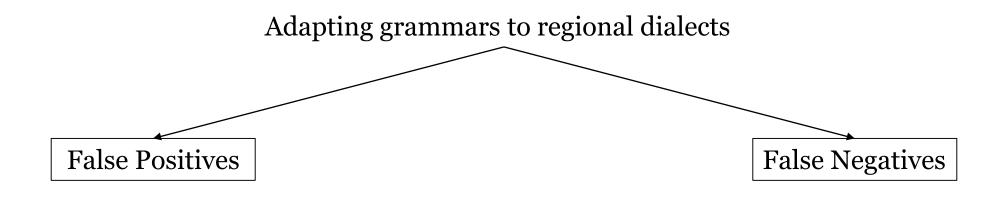
Poster @ CMCL today, 2:30-3:30





Grammars are learned using other web corpora (i.e., ukWac)

(Not learned using Twitter data)



Country	Twitter	Common Crawl	Circle
(au) Australia	+ 5.28%	+ 8.15%	Inner
(ca) Canada	+ 2.77%	+ 5.17%	Inner
(ie) Ireland	+ 8.56%	+ 18.62%	Inner
(nz) New Zealand	+ 5.32%	- 0.59%	Inner
(uk) United Kingdom	+ 9.71%	+ 13.98 %	Inner
(us) United States	- 0.18%	- 1.90 %	Inner
(in) India	- 9.39%	- 10.38%	Outer
(my) Malaysia	- 9.22%	- 11.51%	Outer
(ni) Nigeria	- 0.10%	- 0.78%	Outer
(ph) Philippines	- 4.96%	- 17.39%	Outer
(pk) Pakistan	- 11.24%	- 17.25%	Outer
(za) South Africa	+ 3.78%	+ 4.62%	Outer
(ch) Switzerland	+ 4.82%	+ 13.96%	Expanding
(pt) Portugal	- 5.34%	- 4.70%	Expanding

Relative Average Feature Density (CxG-2)

<u>A Place</u>

Human Geography: Place Names (Mt. Cook vs. Aoraki; Canterbury vs. Waitaha)

Human Geography: Place Names

Human Geography: Culture (Kapa haka, Cricket, Freedom Camping)

<u>Human Geography</u>: Place Names

<u>Human Geography</u>: Culture

Human Geography: Events (World Buskers Festival, Well-being budget)

Human Geography: Place Names

<u>Human Geography</u>: Culture

<u>Human Geography</u>: Events

Linguistics: Dialect (Dative vs. Ditransitive; Gerund vs. Infinitive)

(1) Finding national dialects of English

(2) Finding syntactic variants in English

(3) Modeling dialects using classification

(1) Fixed training / testing sets (327k/66k and 308k/64k)

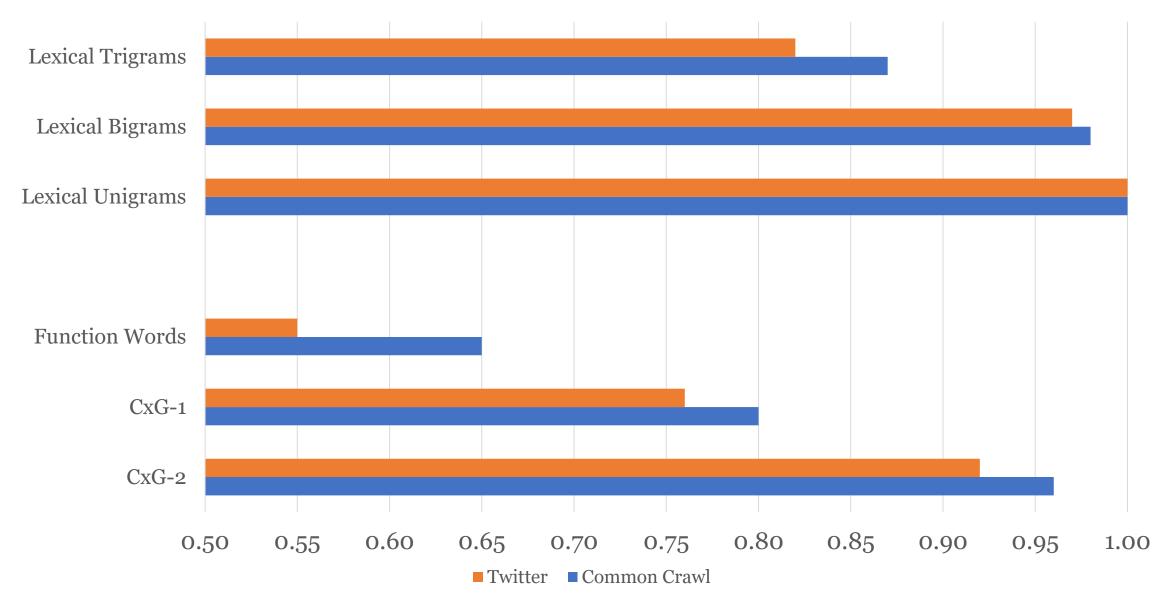
Dialect Classification

- (1) Fixed training / testing sets
- (2) Linear SVM (with unmasking)

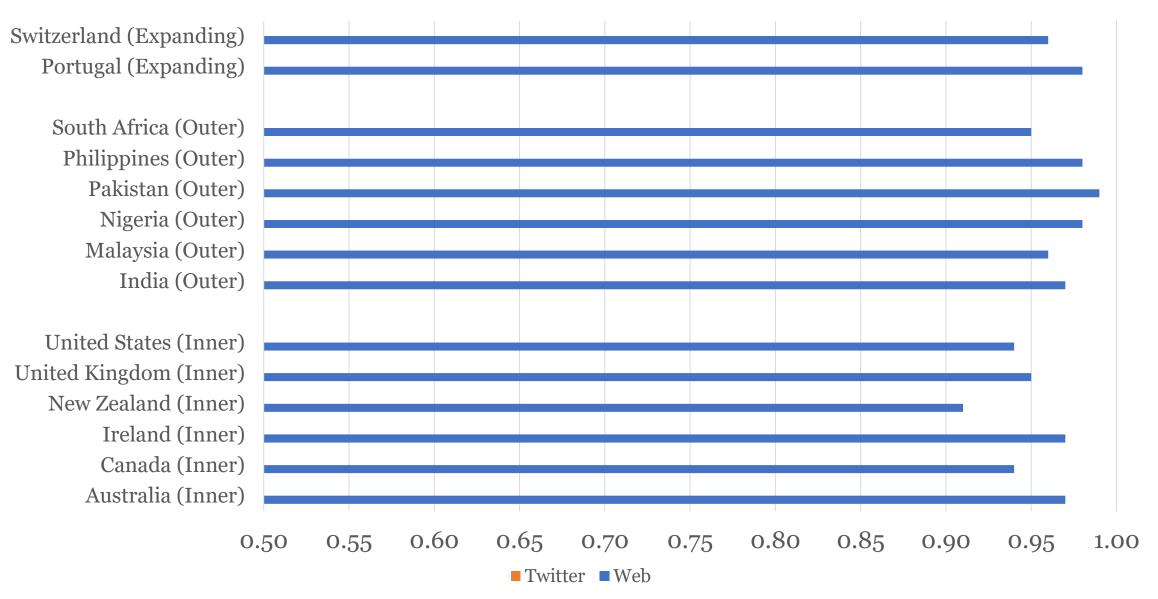
Dialect Classification

- (1) Fixed training / testing sets
- (2) Linear SVM
- (3) Sample size: 1k words

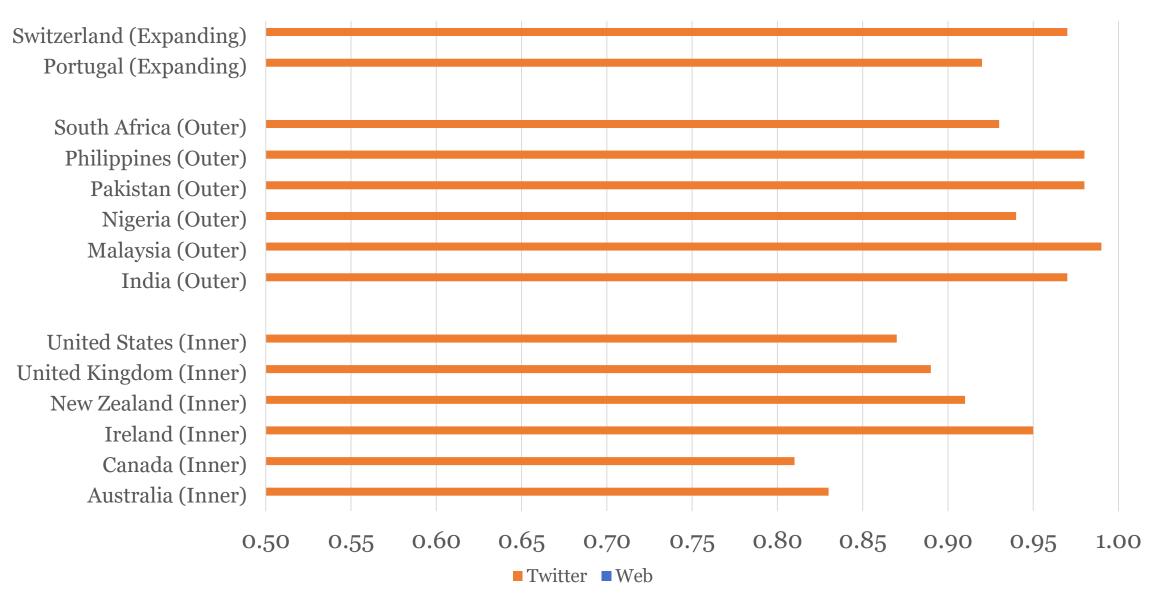
Dialect Classification (by Weighted F1)



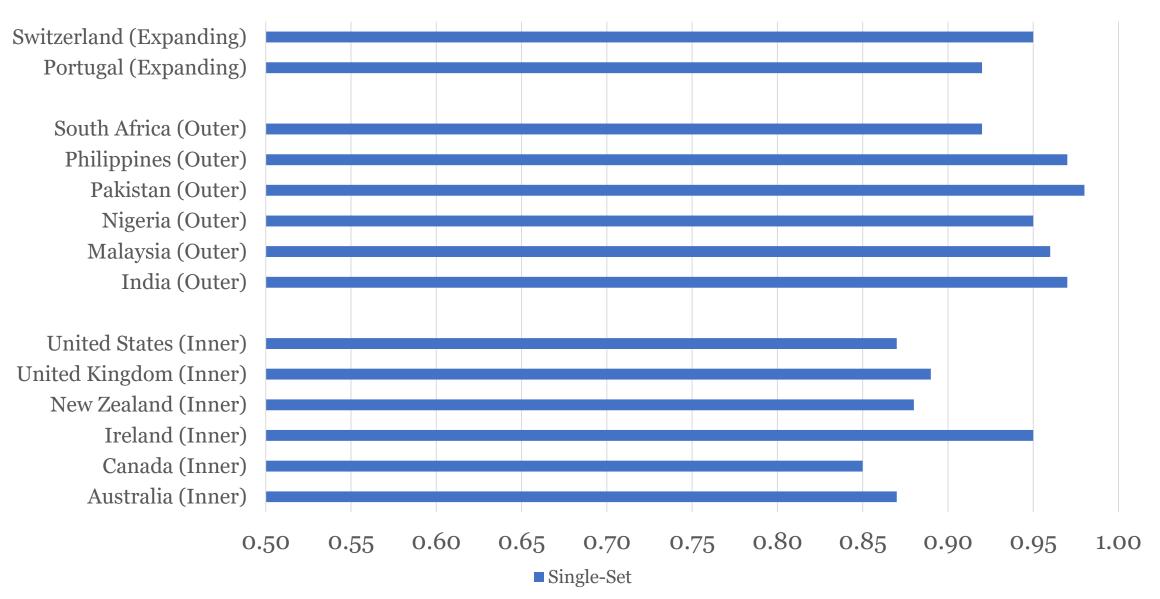
Dialect Classification (by Weighted F1) (CxG-2)



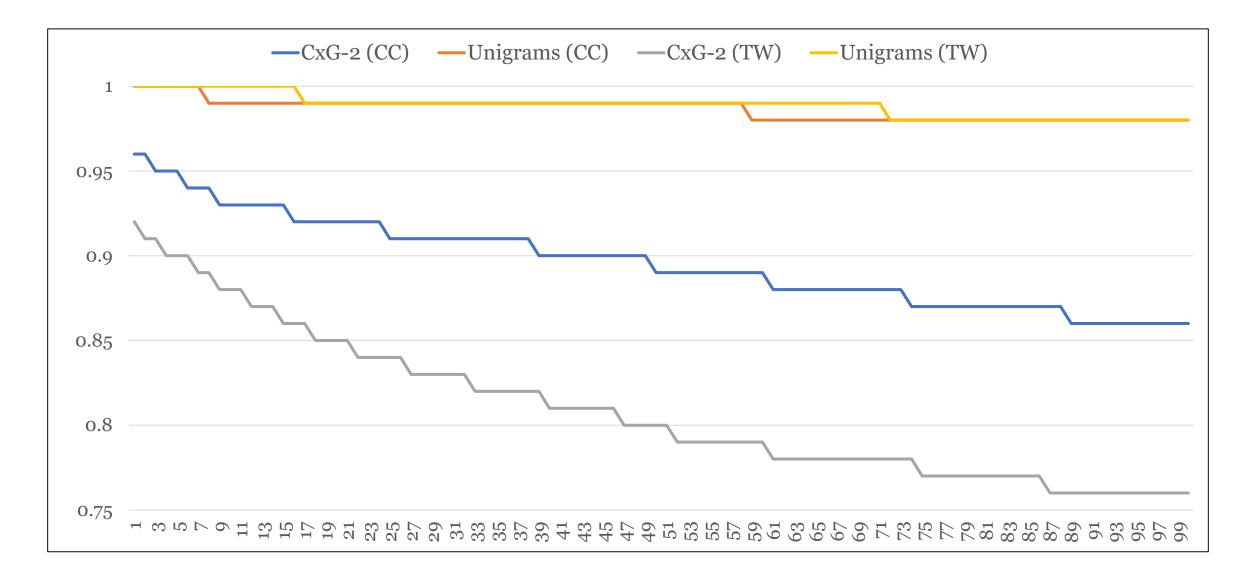
Dialect Classification (by Weighted F1) (CxG-2)



Dialect Classification (by Weighted F1) (CxG-2) (Cross-domain)



Dialect Classification (by Weighted F1) (Across unmasking rounds)



1. Mixing *inner-* and *outer-* and *expanding-* circle varieties seems to work fine

1. Mixing *inner-* and *outer-* and *expanding-* circle varieties seems to work fine

2. Inner-circle varieties have the best fit with a generic grammar...

1. Mixing *inner-* and *outer-* and *expanding-* circle varieties seems to work fine

2. Inner-circle varieties have the best fit with a generic grammar...

3. But *outer-* and *expanding-* circle varieties are more distinct (negative evidence?)

1. Mixing *inner-* and *outer-* and *expanding-* circle varieties seems to work fine

2. Inner-circle varieties have the best fit with a generic grammar...

3. But outer- and expanding- circle varieties are more distinct (negative evidence?)

4. Within-domain models work well; cross-domain models are bad

1. Mixing *inner-* and *outer-* and *expanding-* circle varieties seems to work fine

2. Inner-circle varieties have the best fit with a generic grammar...

3. But outer- and expanding- circle varieties are more distinct (negative evidence?)

4. *Within-domain* models work well; *cross-domain* models are bad

5. Lexical models (human geography?) have better accuracy and stability over features

1. Mixing *inner-* and *outer-* and *expanding-* circle varieties seems to work fine

2. Inner-circle varieties have the best fit with a generic grammar...

3. But outer- and expanding- circle varieties are more distinct (negative evidence?)

4. *Within-domain* models work well; *cross-domain* models are bad

5. Lexical models (human geography?) have better accuracy and stability over features

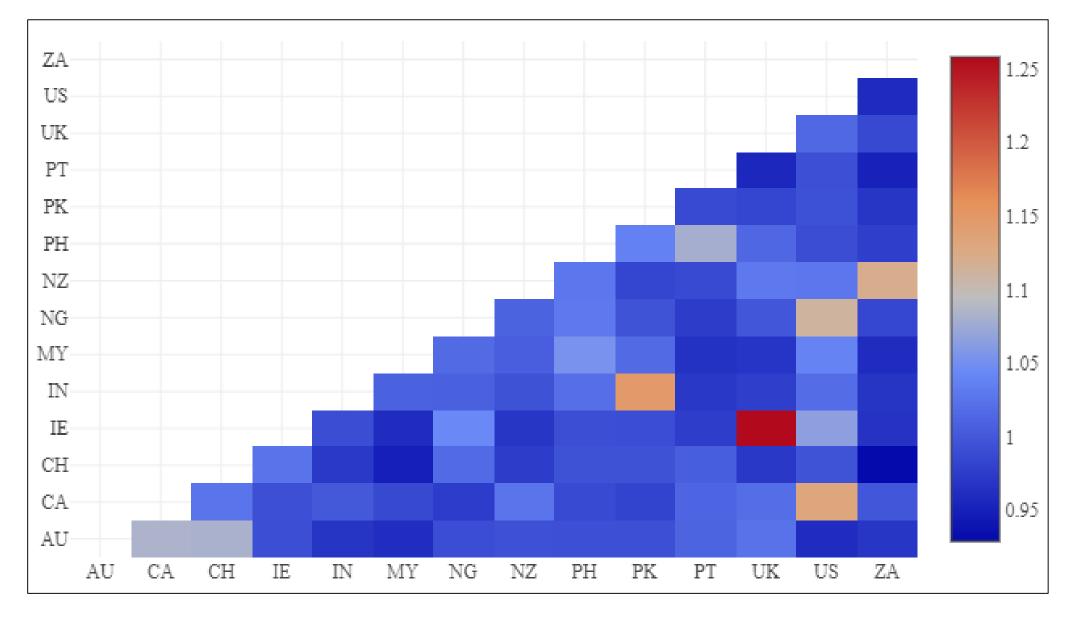
6. Pruning an umbrella-grammar to fit a dialect is fine... adding constructions is a challenge

Thanks!

Jonathan Dunn jonathan.dunn@canterbury.ac.nz www.jdunn.name

Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

Dialect Classification (Similarity by cosine distance) (CxG-2 model, Common Crawl)



Dialect Classification (grammar evaluation)

	CxG-1	CxG-2	
	Frequency	Association	Р
ara	44.08%	29.45%	0.0001
deu	52.49%	18.69%	0.0001
eng	51.80%	23.11%	0.0001
fra	43.28%	40.52%	0.0037
por	45.13%	38.91%	0.0137
rus	54.14%	13.93%	0.0001
spa	60.34%	26.36%	0.0001
zho	57.01%	37.96%	0.0030

Compression = MDL Score / Baseline

(smaller is better)