Frequency vs. Association For Constraint Selection in Usage-Based Construction Grammar

Modeling Emergence

Idea 1. Usage-based Grammar: Any representation can be stored... but not all are worth storing

Using a metric based on Minimum Description Length (memory vs. computation),

Search for the candidates with the highest global frequency

(but use local association to reduce the number of candidates to count)

Variables line = sequence of units *unit* = possible slot-constraints: (lex, syn, sem) u_i, u_{i+1} = two adjacent units $c_i, c_{i+1} = \text{constraint types for } u_i, u_{i+1}$ RS = one slot-constraint per unit in line Algorithm while RS not complete: for u_i, u_{i+1} in line: for all possible transitions c_i, c_{i+1} : if $\Delta P(c_i, c_{i+1})$ is highest available: add c_i, c_{i+1} to RS

 Table 4: Frequency-Based Selection Algorithm

Association

Hypothesis

An entrenched construction creates a chain of associated slot-constraints.

Variables	
-----------	--

node = unit (i.e., word) in line

Search for the chain with the highest global association strength

(but use global frequency as a final selection parameter)

startingNode = start of potential construction *state* = type of slot-constraint for node path = route from root to successor states[c] = list of immediate successor states c_i, c_{i+1} = transition to successor constraint *candidateStack* = plausible constructions $evaluate = \text{maximize} \sum \Delta P \text{ for } c_i, c_{i+1} \text{ in } path$ Main Loop for each possible startingNode in line: RecursiveSearch(path = startingNode) evaluate candidateStack **Recursive Function** RecursiveSearch(path): for c_i, c_{i+1} in [c] from path: if ΔP of $c_i, c_{i+1} >$ threshold: add c_{i+1} to path RecursiveSearch(path) else if path is long enough: add to candidateStack

 Table 5: Association-Based Selection Algorithm

Jonathan Dunn

jonathan.dunn@canterbury.ac.nz github.com/jonathandunn www.jdunn.name

Construction Grammar

1. CxG represents grammar using constraint-based constructions (1a and 2a)

2. Each construction is made up of slots, each of which is defined by a *constraint*

3. Constraints are drawn from lexical, syntactic, and semantic representations

Lexical

Word-forms from background corpus (500 token threshold in ~ 1 billion words)

Syntactic

2. Each construction is made up of <u>slots</u> , each of which is defined by a construction
(1a) [SYN:NOUN — SEM-SYN:TRANSFER[V] — SEM-SYN:ANIMATE[N] — SYN:NOUN
(1b) "He gave Bill coffee."
(1c) "He gave Bill trouble."
(1d) "Bill sent him letters."
(2a) [SYN:NOUN — LEX:"give" — SEM-SYN:ANIMATE[N] — LEX:"a hand"]
(2b) "Bill gave me a hand."

Categories from the Universal POS tagset Annotated using RDRpostagger

Semantic

Word embeddings clustered using x-means Clusters divided again by syntactic categories

Grammar Quality

Minimum Description Length

Operationalizes usage-based grammar's balance between

memory and *computation*

Probability is Key to MDL

1. *Representation Types*: Considered equally probable (no explicit bias)

2. *Slot-Constraints*: Equally probable by type (favors smaller alphabets)

3. *Constructions (in L1)*: Sum of representation types and constraints

4. *Constructions (in L2)*: Based on observed frequency in training data

5. *Regret (in L2)*: Based on frequency of unencoded words (errors)

Results

Compression = MDL Score / Baseline (lower is better) Experimental Set-up: Same pipeline for both models (only selection algorithm differs) (see paper)

Evaluation: Calculate MDL metric on 5 independent test sets per language (each with 10 mil words)

Association-based model is significantly better on all languages									
	Frequency	Association	Р						
ara	44.08%	29.45%	0.0001						
deu	52.49%	18.69%	0.0001						
eng	51.80%	23.11%	0.0001						
fra	43.28%	40.52%	0.0037						
por	45.13%	38.91%	0.0137						
rus	54.14%	13.93%	0.0001						
spa	60.34%	26.36%	0.0001						
zho	57.01%	37.96%	0.0030						

Table 6: Compression Rates by Language withSignificance of Difference Between Models

			But it is not quite so simple								
										Ļ	, ,
		Si of the g	ize rammar		S of th	ize e data			S of e	ize rrors	
		$L_1(F)$	$L_1(\Delta P)$	$L_2\{C$	$\mathcal{L}\left\{ \left(F\right) \right\}$	$L_2\{C\}$	(ΔP)	$L_2\{R$	$\mathbb{C}\left\{ \left(F\right) \right\}$	$L_2\{R\}$	(ΔP)
	ara	0.43%	1.25%	82.	14%	68.6	5%	17.4	3%	30.1	0%
	deu	0.50%	1.56%	89.	32%	93.4	2%	10.1	7%	05.0	1%
	eng	0.57%	1.44%	93.2	22%	98.0	4%	06.2	21%	00.5	3%
For Portuguese,	fra	0.44%	0.77%	93.0	08%	64.0	9%	06.4	8%	35.1	4%
most of the \longrightarrow	por	0.39%	0.27%	96.'	72%	25.0	0%	02.8	39%	74.7	3%
encoding size	rus	0.42%	1.35%	66.	37%	94.8	7%	33.2	21%	03.7	8%
	spa	0.36%	0.81%	99.:	59%	82.2	4%	00.0)6%	16.9	5%
	zho	0.25%	0.37%	92.2	24%	96.9	2%	07.5	51%	02.7	1%

Table 7: Break-down of MDL metric by relative proportion of the overall score