Frequency vs. Association

For Constraint Selection in Usage-Based Construction Grammar

Modeling Emergence

Idea 1. Usage-based Grammar: Any representation can be stored... but not all are worth storing

Question

Using a metric based on

Memory VS Computation Minimum Description Length
(memory vs. computation),
is the best model of
the generalization of constraints
Idea 2. Exemplar Theory: Grammaticalized representations emerge from exemplar / proto-type constructions within constructions
. . r based on
Ditransitive

Idioms: “Give me a hand”

F requency measures

or

“Send me an email” .
Association measures?

Novel Forms: “Smiled himself an upgrade”

Frequency AP is a bi-directional measure

(unlike PMI)

Hypothesis APrp = p(Xp|Yp) — p(Xp|Ya)
A construction is a template which each slot-constraint must fit.

APgrr = p(Yp|Xp) — p(YpP|X4)

Search for the candidates with the highest global frequency

(but use local association to reduce the number of candidates to count) Variables
line = sequence of units
unit = possible slot-constraints: (lex, syn, sem)

Construction-as-Template | , 3 A Ui, Ui+1 = tWO adjacent units
c;, Ci+1 = constraint types for u;, u;11
LEX RS = one slot-constraint per unit in line
Frequency of templates SEM-SYN TRANSFER| V] OBJECT|N] while RS not complete:
for Ui, Uj4-1 1n line:
matters the most, 1 2 3 4 for all possible transitions ¢;, ¢;41:
regardless of internal LEX “gave” “a hand” if AP(c;,c;iy1) is highest available:
lationshi 1 SYN Noun Noun add ¢;,c; 1 to RS
relationships between slots SEM-SYN

Table 4: Frequency-Based Selection Algorithm

Association

Hypothesis
. . . : Variables
An entrenched construction creates a chain of associated slot-constraints. node = unit (i.e., word) in line

starting N ode = start of potential construction
state = type of slot-constraint for node

path = route from root to successor states
Search for the chain with the highest global association strength c] = list of immediate successor states

Ci, C;41 = transition to successor constraint
candidateStack = plausible constructions
evaluate = maximize ) AP for ¢;, ¢;1 1 in path

(but use global frequency as a final selection parameter)

Main Loop
. . for each possible startingNode 1n line:
Construction-as-Transitions | ) ; 4 RecursiveSearch(path = startingNode)
LEX “he” “mailed” “George” “a package” evaluate. candldat?Stack
- Recursive Function
! SYN Noun Verb Noun Noun . .
' - N] \4{ TRANSFER|V] / PERSON|N] \4 OBJECT|N] RecursiveSearch(path):
The best global chain of SEM-SYN  ANIMATE[ for ¢;, ¢;1 in [¢] from path:
transitions outweighs 1 7 3 4 it ﬁdp of ¢;, Cz‘+1il> threshold:
add c;.1 to pat
frequent sequences LEX “he” “oave” “George” “a hand” e
q q ’ / N \" /" RecursiveSearch(path)
: , SYN Noun Ver Noun Noun else if path is 1 h:
path 1s long enougn:
aHOWIHg uncommon constructions SEM-SYN ANIMATE([N] TRANSFER[V] PERSON|[N] OBJECT[N] add to candidateStack

Table 5: Association-Based Selection Algorithm
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3. Constraints are drawn from
lexical, syntactic, and semantic representations

Construction Grammar

1. CxG represents grammar using constraint-based constructions (1a and 2a)

Lexical

Word-forms from background corpus
(500 token threshold in ~ 1 billion words)

2. Each construction is made up of slots, each of which is defined by a constraint Syntactic

Categories from the Universal POS tagset
Annotated using RDRpostagger

(1a) [SYN:NOUN — SEM-SYN:TRANSFER[V ]| — SEM-SYN:ANIMATE[N] — SYN:NOUN]
(1b) “He gave Bill coffee.”

(1c) “He gave Bill trouble.”

(1d) “Bill sent him letters.”

(2a) [SYN:NOUN — LEX:*“give” — SEM-SYN:ANIMATE[N ]| — LEX:*“a hand”]

(2b) “Bill gave me a hand.”

Semantic

Word embeddings clustered using x-means
Clusters divided again by syntactic categories

Grammar Quality

Minimum Description Length Probability is Key to MDL

Operationalizes usage-based grammar’s balance between

memory and computation

|

1. Representation Types: Considered equally probable (no explicit bias)

Encoding size
of the grammar
(on 1ts own)

N

Encoding size
of the data

(with the grammar)

/

2. Slot-Constraints: Equally probable by type (favors smaller alphabets)

3. Constructions (in L1): Sum of representation types and constraints

MDL = mm{L1 )+ L2(D | G)} 4. Constructions (in L2): Based on observed frequency in training data
5. Regret (in L2): Based on frequency of unencoded words (errors)
Encoding size
is based on - Lo(X) = —loga P(X)
probability

Compression = MDL Score / Baseline
(lower is better)

Association-based model is
significantly better on all languages

Table 6: Compression Rates by Language with
Significance of Difference Between Models

Experimental Set-up: Same pipeline for both models (only selection algorithm differs) (see paper)

Evaluation: Calculate MDL metric on 5 independent test sets per language (each with 10 mil words)

But it is not quite so simple....

1

1

\ Size Size Size
r A — 5 of the grammar of the data of errors
requenc ssoclation
i A Ly (F) L1 (AP) | Lo{C} (F) Lo{C}(AP) | Lo{R} (F) Lo{R} (AP)
ara  44.08% 2945%  0.0001 4
deu 52499 1869%  0.000 ara | 043%  1.25% 82.14% 68.65% 17.43% 30.10%
e S1R0%  2311%  0.000] deu | 050%  1.56% | 89.32% 93.42% 10.17% 05.01%
frag 43'28(; 40'520/0 0077 eng | 0.57%  1.44% 93.22% 08.04% 06.21% 00.53%
45'130/0 38'910/0 00137 For Portuglgese, fra | 0.44%  0.77% 93.08% 64.09% 06.48% 35.14%
—y 40/0 13'930/0 0001 o P —[por | 0.39%  027% 96.72% 25.00% 02.89% 74.73%
on 603 40/0 26'360/0 0.0001 encoding size rus | 042%  1.35% 66.37% 94.87% 33.21% 03.78%
E 57'010/0 37'960/0 0.0030 spa | 0.36%  0.81% 99.59% 82.24% 00.06% 16.95%
G — hal ' zho | 0.25%  0.37% 92.24% 96.92% 07.51% 02.71%

Table 7: Break-down of MDL metric by relative proportion of the overall score




