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Abstract
This paper simulates a low-resource setting across 17 languages in order to evaluate embedding similarity, stability, and
reliability under different conditions. The goal is to use corpus similarity measures before training to predict properties of
embeddings after training. The main contribution of the paper is to show that it is possible to predict downstream embedding
similarity using upstream corpus similarity measures. This finding is then applied to low-resource settings by modelling the
reliability of embeddings created from very limited training data. Results show that it is possible to estimate the reliability of
low-resource embeddings using corpus similarity measures that remain robust on small amounts of data. These findings have
significant implications for the evaluation of truly low-resource languages in which such systematic downstream validation

methods are not possible because of data limitations.
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1. Validating Low-Resource Embeddings

This paper simulates a low-resource setting for 17 non-
English languages in order to evaluate embedding simi-
larity, stability, and reliability under different conditions.
While these are actually high-resource languages, we
are able to simulate a low-resource setting across dif-
ferent language families, writing systems, and types of
morphology by constraining both the amount and the
type of data that is made available. We then try to pre-
dict the downstream similarity, stability, and reliability
of embeddings given upstream properties of the train-
ing corpora. The larger goal is to predict the reliability
of embeddings in truly low-resource settings in which
such experiments are not possible. The key finding of
the paper is that there is a strong relationship between
the similarity of training corpora and the similarity of
embeddings, a relationship that extends across a diverse
range of languages and registers.

Embeddings remain a key representation within NLP,
as shown by many samples of recent work (Miaschi
and Dell’Orletta, 2020; /Adelmann et al., 2021). At the
same time, however, recent work has also shown that
embeddings are surprisingly variable (Wendlandt et al..
2018} [Burdick et al., 2021)). Such work has shown that
high-resource languages like English, with many bil-
lions of words available for training, have embeddings
that differ by data set (Antoniak and Mimno, 2018), by
geographic population (Dunn and Adams, 2020), and
even by random iterations on the same data set (Hellrich
et al., 2019). The basic implication is that, for instance,
English embeddings from web data from South Asia are
expected to be quite different from English embeddings
from American news articles.

For high-resource languages, such variability is miti-
gated by the wide availability of in-domain training data

for most tasks. But for low-resource languages there
is a systematic gap in the kind of training data that is
available. For instance, many languages have the Bible
(Christodoulopoulos and Steedman, 2015)) or related re-
ligious literature (Agi¢ and Vuli¢, 2019) as their largest
corpus. The problem is that representations learned
from such corpora are likely to be significantly different
from those learned from other sources.

How much do representations of low-resource lan-
guages depend on the selection of data that happens
to be available? To answer this question, this paper
uses corpus similarity measures on training data (up-
stream) to predict differences in trained embeddings
(downstream). The basic idea is to model the influence
of training data on the variability of embeddings by
simulating different low-resource contexts.

This question is important because most languages are
relatively low-resource, lacking data sets that contain
billions of words. The ability to predict variability in
embeddings given training data would enable us to es-
timate reliability in low-resource languages for which
evaluations such as those in this paper are not possible.

2. Experimental Questions

The main contribution of this paper is to evaluate the
influence of training corpora on embedding stability for
low-resource languages by simulating low-resource and
medium-resource settings. We use measures of corpus
similarity to determine both (i) relationships between
sets of training data and (ii) homogeneity within individ-
ual training sets. The basic question is whether we can
predict downstream embedding similarity (after train-
ing) given upstream corpus similarity (before training).
The larger goal is to estimate the reliability of embed-
dings for low-resource languages, in which systematic
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Language Code Family Writing Morphology
Arabic ara Afro-Asiatic Abjad Root-Pattern
Indonesian ind Austronesian Alphabet Agglutinative
Polish pol IE:Balto-Slavic Alphabet Fusional
Russian rus IE:Balto-Slavic Alphabet Fusional
German deu IE:Germanic Alphabet Fusional
Dutch nld IE:Germanic Alphabet Analytic
Swedish swe IE:Germanic Alphabet Analytic
Greek ell IE:Hellenic Alphabet Fusional
Farsi fas IE:Indo-Iranian Abjad Analytic
French fra IE:Romance Alphabet Fusional
Italian ita IE:Romance Alphabet Fusional
Portuguese por IE:Romance Alphabet Fusional
Spanish spa IE:Romance Alphabet Fusional
Japanese jpn Isolate Logographic Agglutinative
Korean kor Isolate Logographic Agglutinative
Turkish tur Turkic Alphabet Agglutinative
Finnish fin Uralic Alphabet Agglutinative

Table 1: Languages Used in Experiments, Sorted By Family, with Writing System and Type of Morphology

evaluations of different downstream embeddings is not
possible because of insufficient data. This first section
introduces the main experimental conditions and the
questions they are used to address.

Source. How does the source of training data impact
embedding similarity? We draw training data from three
distinct registers: social media, Wikipedia, and web
pages. A register is a unique context of production as-
sociated with a specific communicative situation (Biber|
and Conrad, 2009). A long line of research has shown
that register has a significant impact on both grammar
and the lexicon (Biber, 2012; Biber et al., 2020). Be-
cause of the significance of register variation, we expect
that embeddings trained from different registers (such
as tweets vs Wikipedia articles) will themselves be quite
different. While high-resource languages have many
registers available for training purposes, low-resource
languages often have data from a limited range of reg-
isters (e.g., religious or legal documents). This experi-
mental condition, register-specific embeddings, allows
us to evaluate whether the context of production has a
significant influence on downstream embeddings.

Size. How does the amount of training data impact
embedding variability? We evaluate embedding stabil-
ity over increasing amounts of training data in order to
determine whether more data overall is able to compen-
sate for differences in the data. This condition looks
at corpora ranging from 10 million words to 100 mil-
lion words in increments of 10 million. This line of
experimentation allows us to simulate low-resource and
medium-resource contexts to find out how embeddings
change given more training data.

Language Properties. Do specific types of languages
have more stable embeddings? The experiments here are
conducted across 17 non-English languages as shown
in Table[ll These languages represent 10 unique sub-
families, three types of writing system, and four types

of morphology. This selection of languages allows us
to determine if any of the observed behaviours can be
attributed to a specific type of language.

In the next section, we position this current study against
related work. We then present the underlying data sets
used in the experiments (Section 4) and the methods
used for training embeddings and calculating both cor-
pus similarity and embedding similarity (Section 5).
We then analyze the impact of different registers (Sec-
tion 6), the impact of increasing amounts of training
data within registers (Section 7), the reliability of low-
resource embeddings (Section 8), and the reliability of
corpus similarity measures (Section 9). Finally, we con-
sider the implications of this work for natural language
processing more broadly (Section 10).

3. Related Work

This section reviews related work on both corpus simi-
larity and embedding stability. First, corpus similarity
measures have been used in different applications, such
as text classification, information retrieval, and the eval-
uation of machine translation. Originally defined as a
problem within corpus linguistics (Kilgarriff, 1997} [Kil4
garriff, 2001), many measures have since been proposed
(Kilgarriff, 2009; Fothergill et al., 2016; |Piperski, 2017
Lu et al., 2020).

One common feature across these approaches is that
they are based upon word frequencys; in fact, frequency-
based approaches have consistently out-performed
model-based approaches (Fothergill et al., 2016). More
recently, these measures have been used to evaluate
fluctuation within and between registers for different
language varieties (Dunn, 2021)), as well as to classify
documents (Nanayakkara and Ranathunga, 2018; Leban
et al., 2016) and detect paraphrases in German (Torrest
Moreno et al., 2014]).

In terms of embedding stability, recent work has used
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Figure 1: Embedding Similarity Across Registers by Increased Training Data, Arabic

word similarity to investigate variation between embed-
dings trained on a single corpus (Antoniak and Mimno|
2018), focusing on the training corpus itself as a source
of variation. After examining four algorithms and six
data sets, results show that corpus size is one of several
sources of variability between embeddings. The broader
conclusion, shared by the experiments in this paper, is
that embeddings represent a specific corpus rather than
representing an entire language.

Other work has focused on evaluating whether various
factors contribute to the stability of word embeddings
and analysing the effects of stability on downstream
tasks (Wendlandt et al., 2018). Using a ridge regression
model to predict the stability of individual words, these
results show that stability within domains is greater than
stability across domains. Domains in this setting are
comparable to registers.

To evaluate the stability of word embeddings derived
from a single corpus, (Hellrich et al., 2019) modifies the
Singular Value Decomposition algorithm and compares
it with other algorithms on three English corpora that
ultimately represent distinct registers. The results show
that the modified SVD is found to be both reliable and
accurate as compared to other algorithms. This study
also concludes that stability is positively influenced by
corpus size, so that larger sizes lead to higher stability.
Recent work has used linguistic properties to explain
the stability of word embeddings across different lan-
guages (Burdick et al., 2021)). Again using a regression
model, this work finds that languages with more com-
plex morphology tend to be less stable than languages
with simpler morphology. That finding is not replicated
in this present study, although the issue is raised by the
case of Arabic in Section 8. Most other work, however,
focuses only on English (Antoniak and Mimno, 2018},
Wendlandt et al., 2018; |[Hellrich et al., 2019).

This paper is unique in its cross-linguistic, cross-register,
and cross-size experimental design. This approach al-
lows us to determine in a systematic manner which
properties of corpora influence embedding stability.

4. Data

The data for these experiments comes from comparable
corpora representing 17 languages. The Wikipedia reg-
ister (WK) is collected from the public Wikimedia dump
of March 2020. Languages are identified using the des-
ignation provided by Wikipedia. The web register (CC)
is collected from the Corpus of Global Language Use
(Dunn, 2020), ultimately derived from the Common
Crawl. The social media register (TW) is collected from
geo-referenced tweets. For both web pages and tweets,
languages are identified using the idNet package (Dunn|
2020). A list of languages is provided in Table |1} in-
cluding the family, type of writing system, and type of
morphology for each language. Each source of data (i.e.,
register) provides a corpus of 100 million words.

5. Methods

The experiments in this paper depend on two measures:
similarity between embeddings and similarity between
training corpora. Following previous work (Wendlandt
et al., 2018]), we calculate the similarity between two
sets of embeddings by taking the aggregate overlap of
nearest neighbors. This is calculated as follows: first,
we create an independent corpus for each language, rep-
resenting different registers from the main experimental
data. These background corpora contain movie subti-
tles, news commentary articles, and Bible translations
(Tiedemann, 2012; |Christodoulopoulos and Steedman|
2015)). Thus, each language is represented by the three
registers described above (WK, TW, CC) in addition to
these separate out-of-domain corpora. We find the 1,000
most common lexical items in these background corpora.
For each of the top lexical items, we then retrieve the
ten nearest neighbors from each set of embeddings.

The overlap for each lexical item is the percentage of
words which appear as neighbors within both sets of
embeddings. For example, if dog is a nearest neighbor
for cat in both tweet-based and web-based embeddings,
this indicates a certain similarity between those sets
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Figure 2: Embedding Stability Within Registers by Increased Training Data, Arabic

of embeddings. Thus, higher overlap scores indicate Language | Family Features | Acc.
higher agreement. The overall embedding similarity Arabic Afro-Asiatic C4 99%
between two conditions (such as tweets vs Wikipedia German IE:Germanic C4 98%
at 50 million words) is represented using the average Greek IE:Hellenic W1 97%
overlap across these top 1,000 words. Farsi IE:Indo-Iranian Wi 96%
The embeddings themselves are character-based, trained Finnish Uralic C4 94%
using the skip-gram negative sampling method with 50 French IE:Romance Wi 100%
negative examples per observation and trained for 20 Indonesian | Austronesian Cc4 99%
epochs. Implemented using the fastText framework Italian IE:Romance W1 94%
(Mikolov et al., 2018)), these popular embeddings have Japanese Isolate Cc2 88%
the advantage of being character-based, which we ex- Korean Isolate C4 99%
pect to reduce differences that are caused by morphol- Dutch IE:Germanic Wi 100%
ogy or writing system (c.f., Table 1). Polish IE:Balto-Slavic Wi 99%
We also need to measure the similarity between the train- Portuguese | IE:Romance C4 98%
ing corpora themselves, before training takes place (Kil} Russian IE:Balto-Slavic C4 100%
garriit, 1997} [Fothergill et al., 2016). Recent work on Spanish IE:Romance C4 99%
corpus similarity measures has shown that a frequency- Swedish IE:Germanic C4 96%
based approach with 5k bag-of-words features and Turkish Turkic C4 100%

Spearman’s rho performs well across many languages
(Dunn, 2021). A frequency-based approach to corpus
similarity uses a vector of n-gram frequencies, usually
restricted to the most common n-grams. Spearman’s
rho has been shown to be highly accurate in compar-
ing these frequency vectors, with more similar corpora
having a higher correlation coefficient. Unlike other
measures (Kilgarriff, 2001), Spearman’s rho is not de-
pendent on corpus size. We use the same background
corpora as above to select the top n-gram features for
each language.

While the embedding similarity measure has been eval-
uated before (Wendlandt et al., 2018)), we provide an
evaluation of the corpus similarity measure here. The
underlying task for validation is to predict whether two
samples come from the same register: for example,
given two samples, do both represent tweets? A high
accuracy means that the corpus similarity measures al-
ways distinguish between data sources. To convert this
continuous measure into a categorical prediction, we set
a threshold; the more often this threshold leads to cor-
rect predictions, the more accurate the measure is. The

Table 2: Accuracy of Corpus Similarity Measures with
Feature Type in a Register Identification Task

threshold calculation takes the lowest average similarity
for same-register pairs (for example, CC-CC) and the
highest average similarity for cross-register pairs (for
example, CC-TW). The threshold is set halfway between
these minimum and maximum values (Al1, 2011} |Leban
et al., 2016). We conduct the evaluation using a five-fold
cross-validation design, with the threshold calculated
on the training data for each fold. Each sample in this
design is a 20k word sub-set of a corpus.

The accuracy of this register-prediction task is shown
in Table[2] along with the best type of feature (word or
character n-gram size). While there is some variation in
performance, with Japanese being particularly low, the
generally high performance provides a validation of the
corpus similarity measure. This is important because it
means that these measures are indeed able to distinguish
between corpora representing the three registers used in



these experiments (CC, TW, WK). In other words, these
results show that it is possible to measure differences
between training corpora before we train embeddings.
While the corpus similarity measure performs well, the
scores are not directly comparable across languages be-
cause each language has a different central tendency.
For comparison across different sources (i.e., the web vs
tweets), we retain the raw similarity value and restrict
ourselves to within-language comparisons. For compar-
ison within sources (i.e., the web vs the web), we use
the z-score to standardize the measure across all reg-
isters, in order to make better downstream predictions
(c.f., Section 8). Finally, the similarity between large
corpora are estimated by sampling 200 unique pairs of
sub-corpora, each containing 20k words. We then find
the mean similarity across all samples to represent the
relationship between the larger corpora. A Python pack-
age for reproducing these corpus similarity measures is
available here.

6. Experiment 1: Register

The first experiment asks whether more similar corpora
produce more similar embeddings. In other words, is
there a relationship between the input (a corpus) and
the output (word embeddings)? A different way of ask-
ing this same question is whether register variation, a
long-studied linguistic phenomenon, has a predictable
impact on embeddings. We create three cross-register
comparisons for each language: CC-TW, TW-WK, and
cc-WK. For each comparison, we compute both the cor-
pus similarity (upstream) and the embedding similarity
(downstream). We can visualize embedding similarity
in this context as in Figure[I] which shows similarity for
each pair of register-specific embeddings (y-axis) over
increasing amounts of training data (x-axis) for Arabic.
Each line here represents the similarity between two
different sets of embeddings. We see, for instance, that
all register-specific embeddings become more similar
as the amount of training data increases. At the same
time, the tweet-based and Wikipedia-based embeddings
(in yellow) are much less similar than the others. This
indicates that register variation does, in fact, have an
impact on these sets of embeddings.

The main question here concerns the similarity between
each pair of register-specific embeddings at different
data sizes (i.e., at 100 million words). We see across
languages that there is a clear set of relationships be-
tween embeddings trained on different corpora: register
has a significant impact on embeddings, as we expect
from previous work on register variation. The full set of
figures for each language is provided in the supplemen-
tary material, available here. The question, however,
is whether we can predict these relationships between
embeddings using corpus similarity measures.

We take a closer look in Table 3] with Finnish. For each
pair of registers, in the first column, we see both the sim-
ilarity between embeddings and the similarity between
the training corpora. For both measures, higher values

Register Pair | Embedding Sim. | Corpus Sim.
CC-TW 24.8 0.72
TW-WK 14.3 0.59
CC-WK 19.6 0.66

Table 3: Relationship between Embedding Similarity
and Corpus Similarity for Finnish

Language | Family 10 mil | 100 mil
Arabic Afro-Asiatic 0.727 0.909
German IE:Germanic 0.977 0.993
Greek 1E:Hellenic 0.817 0.914
Farsi IE:Indo-Iranian | 0.591 0.729
Finnish Uralic 0.988 1.000
French IE:Romance 0.947 0.924
Indonesian | Austronesian 0.988 0.981
Italian IE:Romance 0.986 0.928
Japanese Isolate 0.994 0.971
Korean Isolate 0.541 0.972
Dutch IE:Germanic 1.000 0.981
Polish IE:Balto-Slavic | 0.947 0.898
Portuguese | IE:Romance 0.788 0.863
Russian IE:Balto-Slavic | 0.836 1.000
Spanish IE:Romance 0.838 0.966
Swedish IE:Germanic 0.999 0.995
Turkish Turkic 0.678 0.906
Average All 0.861 0.937

Table 4: Relationship between Embedding Similarity
and Corpus Similarity

indicate higher similarity; the scales, however, are quite
different. What we see here is that the same pair of
registers (CC-TW) produce the most similar embeddings
(24.80% overlap) and also have the highest corpus simi-
larity score (0.72). In fact, there is a strong correlation
of 0.999 between these two sets of values. This means
that, for Finnish, we can predict which embeddings will
be more similar even before we train them.

We take a cross-linguistic view of this relationship be-
tween input and output in Table ] The quantity we are
interested in is the relationship between the two mea-
sures, corpus similarity and embedding similarity: how
well could we predict embedding similarity downstream
given corpus similarity upstream? This table shows the
relationship both at 10 million words and at 100 million
words. Note that the corpus similarity measure remains
quite stable across corpus size (c.f., Section 9) while
embeddings become more similar given more training
data (c.f., Figure [T). We see that the relationship be-
comes stronger as the embeddings have more training
data, from an average correlation of 0.86 to 0.93. This
is because the embeddings themselves become more
stable with increased training data (c.f., Section 7).
Analyzing Table [d] we can use the properties of each
language to understand what causes specific outliers.
For example, the relationship for Korean is quite low at
10 million words but rather high at 100 million words.
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We might think this is caused by the logographic writing
system, but that same pattern is not shown in Japanese.
The lowest relationship is shown by Farsi, with a maxi-
mum correlation of 0.729. However, we know that this
is not caused by the writing system (shared with Arabic)
or by the type of morphology (shared by several other
languages). This would rather seem to be a specific
property of Farsi corpora, rather than a property based
on either Farsi’s writing system or morphology.

This section has shown two important properties of the
impact of register variation on embeddings: First, across
all languages there is a significant difference between
register-specific embeddings. This means that it is more
accurate to formulate Arabic-Wikipedia embeddings
rather than universal Arabic embeddings: the down-
stream embeddings remain register-specific, at least
with this amount of training data. In other words, reg-
ister variation has a consistent impact downstream on
trained embeddings. Second, there is a strong relation-
ship between the training corpora themselves and the
similarity between embeddings trained on those corpora.
In other words, more similar corpora produce more sim-
ilar sets of embeddings. This is an important finding
because it suggests that we should be able to predict the
conditions under which embeddings will be both stable
and reliable.

7. Experiment 2: Size

The second experiment quantifies the amount of change
that occurs within register-specific embeddings as the
amount of training data is increased. The central ques-
tion is whether it is possible to predict the growth curve
of embedding stability, the rate at which embeddings
become more similar when trained from different sub-
sets of the same corpus. For example, Figure 2] shows
embedding similarity by size within each register for
Arabic. Here each line represents a single register, with
the comparison made between embeddings trained using
different amounts of data. For example, the green line
represents Wikipedia. With less data, the agreement be-
tween the 10 million and 20 million word conditions (on
the left) is below 40%; but with more data the agreement
between the 90 million and 100 million word conditions
(on the right) is closer to 60%.

We refer to this as stability because the two corpora
overlap to a large degree. This gives us a baseline for
stability within each language: cross-register similar-
ity, for example, should never exceed within-register
similarity in this setting. As before, we expect that
more training data leads to more stable embeddings;
this trend is found across all languages. The more mean-
ingful question, however, is whether we can predict this
increasing rate of stability using corpus similarity.

In other words, we might expect that more homoge-
neous corpora, data sets that are more self-similar, will
produce more stable embeddings because they contain
less internal variation. We test this hypothesis in two
ways: First, we take the amount of increase in embed-

Language | Feature cc T™W WK

Arabic C4 63.22 | 65.45 | 58.61
German C4 64.28 | 67.88 | 59.71
Greek Wi 62.99 | 68.21 | 57.59
Farsi Wi 62.53 | 68.87 | 57.51
Finnish C4 63.34 | 67.94 | 57.92
French Wi 58.99 | 65.63 | 51.71
Indonesian C4 67.77 | 57.90 | 60.79
Italian Wi 65.16 | 62.66 | 62.65
Japanese C2 54.81 | 59.42 | 50.29
Korean C4 59.26 | 62.74 | 55.61
Dutch Wi 64.56 | 67.17 | 60.43
Polish Wi 66.50 | 69.78 | 52.93
Portuguese Cc4 64.80 | 60.10 | 57.58
Russian C4 57.31 | 67.96 | 60.18
Spanish C4 67.39 | 70.59 | 60.43
Swedish C4 65.02 | 65.64 | 52.89
Turkish C4 61.40 | 66.14 | 54.62
Average 62.90 | 65.53 | 57.14

Table 5: Embedding Stability by Language and Register,
90 million and 100 million word comparison

ding stability for each condition. For example, Arabic
web corpora have an increase of 20.49% in embedding
stability between the 10-20 million and 90-100 million
word comparisons. But the Arabic Wikipedia corpora
have a higher increase of 24.26%. To test whether we
can predict the amount of increased stability, we look
at the correlation between (i) the increased stability of
within-register embeddings and (ii) the homogeneity
of the training corpus. Homogeneity here is the same
corpus similarity measure calculated across 200 unique
chunks from a single corpus. However, there is no con-
sistent relationship. A second approach looks at the
relationship between the slope of increased stability
across all conditions and corpus homogeneity. Again,
there is no consistent relationship across languages.
This experiment therefore reaches a negative result: it
is not possible to use corpus homogeneity to predict
embedding stability in this context. Table [5] shows
within-register similarity at the 90-100 million word
comparison condition. On the one hand, for each con-
dition there is higher similarity in this same-register
comparison than we saw in the previous cross-register
comparison, as we would expect. However, it is not
possible to predict the rate or the degree of increased
embedding stability given corpus homogeneity.

8. [Experiment 3: Reliability

The third experiment asks whether we can predict the
reliability of embeddings in very low-resource settings.
First, we train embeddings using only 1 million words
from each language in each register: 1 million words of
Arabic tweets, for example. We repeat this process mul-
tiple times and calculate similarity between ten unique
pairs of same-register embeddings in each language. For
many low-resource languages we have only 1 million
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Figure 3: Corpus Similarity Between Registers by Increased Training Data, Arabic
Register | Reliability | Homogeneity Language | Family Correlation
CcC 21.63 -0.28 Arabic Afro-Asiatic 0.567
™ 26.42 -0.19 German IE:Germanic 0.897
WK 16.88 -0.36 Greek IE:Hellenic 0.827
Farsi IE:Indo-Iranian 0.993
Table 6: Relationship between Embedding Reliability Finnish Uralic 0.847
and Corpus Homogeneity for Italian French IE:Romance 0.979
Indonesian | Austronesian 0.976
Italian IE:Romance 0.999
words available, so that embeddings must be trained Japanese Isolate 0.999
on whatever data there is. This experiment simulates Korean Isolate 1.000
many different samples from high-resource languages Dutch IE:Germanic 0.976
in order to capture the distribution of embedding sim- Polish IE:Balto-Slavic 0.890
ilarity values in a low-resource setting: how different Portuguese | IE:Romance 0.910
would register-specific embeddings have been if we had Russian IE:Balto-Slavic 0.786
instead observed some other sub-set of the data? Spanish IE:Romance 0.999
As we have seen, larger training sets lead to more stable Swedish IE:Germanic 0.962
embeddings. This means, for example, that representa- Turkish Turkic 0.972
tions based on a very small amount of data are expected Average All 0.916

to be less stable. Our question here is about degrees of
instability: can we predict which low-resource embed-
dings will be more reliable across different samples?
The basic idea is that, if such predictions are possible,
we can estimate reliability in truly low-resource settings
for which multiple training sets are not available.

We use Italian as an example in Table[6] showing the reli-
ability of embeddings in a low-resource setting together
with the homogeneity of the training corpora. Reliabil-
ity here is the average agreement across 10 random pairs
of embeddings, each representing a unique sub-set of
the same corpus. The overall relationship in this case is
quite strong, a correlation of 0.999. For example, the
most homogeneous corpus (TW), has the highest relia-
bility across random pairs of embeddings. Note that the
homogeneity scores have been standardized using the
z-score across all register combinations; thus, the mean
is 0 with values above 0 indicating high similarity and
values below 0 indicating lower similarity. The central
question is whether corpus homogeneity can be used to
predict the reliability of low-resource embeddings.

Table 7: Relationship between Embedding Reliability
and Corpus Homogeneity

The relationship between homogeneity and embedding
reliability in low-resource settings is shown in Table
This relationship is rather strong on average, 0.916,
allowing us to predict the conditions under which em-
beddings in a low-resource setting will be more reliable.
This finding is important because, if corpus similarity
measures remain robust across different data sizes, we
could predict the degree of confidence we should have
for embeddings trained in truly low-resource contexts.

While this relationship is strong in general, there are
some clear outliers: for example, in Arabic the corre-
lation is only 0.567. This means that there is only a
weak relationship between corpus homogeneity and the
reliability of low-resource embeddings. Russian is an-
other language with a relatively weak relationship, in
this case 0.786. While Arabic is the only Afro-Asiatic



language in this data set, the other Balto-Slavic lan-
guage (Polish) has a much stronger relationship than
Russian. One potential factor is that Arabic morphol-
ogy, a unique root-and-pattern system, is not shared by
any other language in this study. This raises a question
for future work about whether related languages like
Hebrew would evidence this same characteristic.

The experiment in this section has shown that most
languages have a strong relationship between the ho-
mogeneity of the training corpus and the reliability of
very low-resource embeddings (trained on only 1 mil-
lion words). The implications of this relationship are
important because it suggests that we can predict the
reliability of low-resource embeddings.

9. Experiment 4: Corpus Similarity

The final experiment asks how much change we see in
corpus similarity measures given the size of the data
set. We have calculated corpus similarity by dividing a
corpus into many chunks of 20k words and calculating
pairwise similarity between these chunks. That means
we are estimating the overall similarity by sampling a
number of individual observations (200 as implemented
here). Here we measure the stability of corpus similar-
ity measures over corpus size, as shown for Arabic in
Figure[3] In this figure, the y-axis represents corpus sim-
ilarity and the x-axis represents the size of the corpus.
Overall, the measures are quite stable.

Language | Ftr. | CC-TW | CC-WK | TW-WK
Arabic Cc4 0.056 0.024 0.062
German c4 0.040 0.051 0.036
Greek W1 | 0.033 0.037 0.038
Farsi W1 | 0.041 0.023 0.061
Finnish C4 0.014 0.031 0.066
French Wi 0.051 0.045 0.068
Indonesian | C4 0.069 0.045 0.093
Italian W1 | 0.031 0.035 0.033
Japanese c2 0.025 0.028 0.038
Korean C4 0.046 0.063 0.058
Dutch Wi 0.023 0.038 0.042
Polish W1 | 0.022 0.069 0.059
Portuguese | C4 0.071 0.030 0.056
Russian C4 0.067 0.069 0.071
Spanish C4 0.019 0.040 0.055
Swedish C4 0.014 0.054 0.040
Turkish Cc4 0.045 0.028 0.104
Average All 0.039 0.041 0.057

Table 8: Max — M<in of Similarity Across Sizes

We explore the stability of corpus similarity measures in
Table[8] This table takes the average corpus similarity
value across each amount of data (10 million words,
20 million words, and so on) and then finds the range
between the maximum similarity and the minimum sim-
ilarity for each condition: for example, the similarity
between Arabic tweets and Arabic Wikipedia articles
at different sample sizes. This table shows that there is

only a small variation across sample size in each condi-
tion. We further test this using a one-sample t-test to see
if each condition actually constitutes a single population.
In all cases, there is no significant difference among the
population of corpus similarity values by size, a con-
firmation of the visual trend in Figure 3] Thus, corpus
similarity measures are robust regardless of the size of
the corpus.

10. Conclusions

This paper has simulated low-resource settings in a
cross-lingual and cross-register context in order to mea-
sure the similarity, stability, and reliability of embed-
dings. The basic idea has been to examine the ability
of corpus similarity measures, applied to training data,
to predict downstream differences in embeddings. The
important background is that corpus similarity measures
remain stable across corpus size, so that they can be
applied in truly low-resource settings.

The first findings, in Sections 6 and 7, showed that (i)
register-specific embeddings are significantly different
and (ii) that embeddings become more stable within reg-
isters as the amount of training data increases. Both of
these findings are expected. The important new con-
tribution is the fact that the degree of difference in
register-specific embeddings can in fact be predicted
by differences in the training corpora themselves. Be-
cause low-resource languages have a reduced inventory
of register-specific corpora, it is not possible to directly
measure the impact of register on embeddings in such
languages. Corpus similarity measures thus allow us to
indirectly measure the impact of register in truly low-
resource settings.

The second important finding, in Section 8, is that the
stability of low-resource embeddings can be predicted
given corpus homogeneity measures. In a truly low-
resource setting, we would never be able to measure
embedding reliability because of data limitations. We
can, however, measure corpus homogeneity even with
limited corpus sizes (c.f., Section 9). The combination
of these two findings, then, means that it is possible to
predict which low-resource embeddings are more re-
liable and which are less reliable. This constitutes a
significant advance in validating low-resource language
resources, providing a measure of confidence for em-
beddings trained from small corpora.

The caveat of the experiments in this paper, however, is
that we have focused on simulated low-resource settings
rather than actual low-resource settings. This is a neces-
sary choice given the need to undertake a large number
of comparisons within each language. Further, the 17
languages used here represent a range of language fam-
ilies and types of morphology, but we know that truly
low-resource languages often belong to families that are
not represented here.

A Python package is made available for working with
these corpus similarity measures and the full experimen-
tal results are available in the supplementary material.



https://www.github.com/jonathandunn/corpus_similarity
https://www.dropbox.com/s/hsdzyatb4d2a3bm/LREC_2022.Supplementary_Material.zip?dl=0
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