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1 Data-Driven Cognitive Linguistics 

Computational linguistics and cognitive linguistics come together when we use data-

driven methods to conduct linguistic experiments on corpora. This chapter uses usage-based 

construction grammar to model geographic variation in language. The basic challenge is to show 

how grammatical structure emerges given exposure to usage and then how grammatical 

structures change given exposure to different sub-sets of usage. We first show how 

computational methods can be used to experiment with language learning by training a usage-

based model of construction grammar. We then show how computational methods can be used to 

experiment with language variation by training a construction-based model of dialectology. To 

make these two experiments possible, we must also consider the validity of the corpora that we 

use for the experiments and how well they represent specific populations. Taken together, the 

work described here constitutes a computational theory of usage-based grammar that covers 

seven languages (English, French, German, Spanish, Portuguese, Russian, Arabic) and 79 

distinct national dialects of these languages. Each part of the theory is an implemented 

computational model that can be evaluated using its predictions on held-out testing data. 

How does a computational experiment work? The illustration in Figure 9.1 shows the 

three main components: First, language usage is represented using a corpus. Second, a 

computational model represents our linguistic theory. This means that all theories must be fully 

implemented. Third, we validate our theories using their predictions on held-out evaluation data. 

For example, in Section 3 we experiment with two variants of usage-based construction 

grammar, using the same data for training and testing across both theories. In this paradigm, 

whichever theory makes better predictions provides better generalizations.  

 

Figure 9.1. The Computational Paradigm 
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The challenge for a computational experiment is that each component must be fully 

implemented. In other words, no part of the theory can be left under-specified. In this chapter we 

thus consider all aspects of this experiment in usage-based grammar, from data collection to 

language learning to language variation. Our first question, in Section 2, is how to represent 

constructions in a computational manner. In other words, how do we define slot constraints? 

What are the relationships between slots? The important point here is that usage-based 

representations must be as unsupervised as possible, not relying on our own introspections to 

form syntactic generalizations. The basic idea is that the more we rely on introspection the less 

we rely on observed usage. 

Our second question, in Section 3, is how to learn a grammar of constructions. In other 

words, construction grammar provides a rich framework for describing form-meaning mappings. 

But this rich framework creates an enormous number of possible constructions, most of which 

the learner is exposed to but does not actually learn. A usage-based theory of grammar must be 

able to balance memory (the ability to store frequent constructions) and computation (the ability 

to combine more abstract constructions on-the-fly). The important point here is that we can 

experiment with implementations of usage-based grammar that are not limited to just one narrow 

selection problem, like the dative vs. the ditransitive. 

Our third question, in Section 4, is how to create corpora from purely digital sources like 

the web and social media. In other words, data-driven computational methods require massive 

amounts of data, so that interview-based or survey-based corpora are simply not sufficient. How 

do we create this kind of data? The section gives an overview of the 420 billion word Corpus of 

Global Language Use (Dunn 2020). While collections of language data of this size are what 

make computational methods possible, their scale requires different methods for using and 

validating the data. 

Our fourth question, in Section 5, is how to evaluate digital corpora against local 

population demographics. In other words, how well do tweets, for example, represent actual 

language use by actual populations? We look at the relationship between data production, 

population size, and population demographics. Then, we use the difference-in-differences 

method to find out whether there is a significant presence of non-local populations in digital 

corpora. The important point in Sections 4 and 5 is that we are able to systematically evaluate 

digital corpora before we use them for linguistic experiments. Because we rely on corpora as 

representations of usage, it is essential to understand what populations these corpora represent. 

Our fifth question, in Section 6, is how a construction grammar varies across national 

dialects of a language. In other words, we model geographic variation in the usage of 

constructions, assuming political boundaries as a constant. How is variation distributed across an 

entire construction grammar? What does geographic variation look like from the perspective of 

usage-based grammar? The important point here is that a computational approach to dialectology 

can make accurate predictions about which dialect a particular sample comes from, providing a 

measure of how well the model characterizes a particular dialect. 

Thus, this paper provides an overview of one approach to computational cognitive 

linguistics, from language learning to language variation. The basic problem is to understand the 

relationship between exposure to usage and both (i) the emergence of grammatical structure and 

(ii) variation in grammatical structure. Each of these sections draws on a specific Python package 
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used to implement the details in question.1 Because visualization is important for understanding 

computational models, we also provide an interactive visualization for the geographic data.2  

 

2 Representing Constructions 

This section reviews recent work on multi-lingual construction grammars (CxGs) that are 

learned directly from observed usage, as represented in a corpus (Dunn 2017, 2018a, 2019b, 

Dunn & Nini 2021; Dunn & Tayyar Madabushi 2021). The goal of the section is to show how 

we can approach the problem of using unsupervised learning to create a CxG. The term 

unsupervised learning refers to algorithms which do not start with ground-truth annotations. 

Such an approach is the culmination of usage-based hypotheses in linguistics, where 

constructions are based on the data and not filtered through introspections. 

The Construction Grammar paradigm (CxG: Langacker 2008; Goldberg 2006) represents 

grammar using a hierarchical inventory of constraint-based constructions. In computational 

terms, a construction is a possibly non-continuous sequence in which each unit satisfies some 

combination of lexical, syntactic, and semantic constraints (e.g., Chang et al. 2012; Steels 2004, 

2012, 2017). This section uses unsupervised methods to represent slot-constraints and their 

fillers. 

To understand why this is important, consider implementations of CxG such as Fluid 

Construction Grammar (FCG) and Embodied Construction Grammar (ECG) that require the 

manual specification of constraints using a knowledge representation framework like FrameNet 

(e.g., Laviola et al. 2017; Matos et al. 2017; van Trijp 2017; Ziem & Boas 2017; Dodge et al. 

2017). While these approaches can provide high-quality representations of a few constructions, 

they cannot model the emergence of slot-constraints: their constraints are defined rather than 

learned. We instead follow work that models CxG from a usage-based perspective: first, 

generating potential constructions given a corpus (Wible & Tsao 2010; Forsberg et al. 2014); 

second, selecting the optimal set of constructions, where optimality is measured against a test 

corpus. This provides a model of how syntactic constraints are learned. The point is that there is 

a significant difference between a linguistic annotation of a construction and a linguistic theory 

of usage-based grammar. 

Following previous work, constructions are represented as a sequence of slot-constraints, 

as in (1a). Slots are separated by dashes and constraints are defined by both type (Syntactic, Joint 

Semantic-Syntactic, Lexical) and filler (for example: noun, a part-of-speech or animate, a 

semantic domain).  

(1a) [SYN:noun --- SEM-SYN:transfer[V] --- SEM-SYN:animate[N] --- SYN:noun] 

(1b) “He gave Bill coffee.” 

(1c) “He gave Bill trouble.” 

(1d) “Bill sent him letters.” 

(2a) [SYN:noun --- LEX: “give” --- SEM-SYN:animate[N] --- LEX: “a hand”] 

 
1 https://github.com/jonathandunn/ 
2 https://www.earthlings.io 

https://github.com/jonathandunn/
https://www.earthlings.io/
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(2b) “Bill gave me a hand.” 

The construction in (1a) contains four slots: two with joint semantic-syntactic constraints 

and two with simple syntactic constraints. The examples in (1b) to (1d) are tokens of the 

construction in (1a). Lexical constraints, as in (2a), represent idiomatic sentences like (2b). These 

constructions are context-free because any sequence that satisfies the slot-constraints becomes a 

token or instance of that construction. 

The difficulty of modelling slot-constraints is that constructions can overlap: multiple 

constructions in the grammar are allowed to represent a single phrase. For example, (2b) is 

actually a token of both (1a) and (2a). This makes identifying constructions more difficult 

because reaching the representation in (1a) does not rule out also reaching the representation in 

(2a). Both could be part of a single speaker's grammar. 

 

 1  2  3  4 

LEX “he”  “mailed”  “George”  “a package” 

SYN Noun  Verb  Noun  Noun 

SEM-SYN ANIMATE[N]  TRANSFER[V]  PERSON[N]  OBJECT[N] 

        

 1  2  3  4 

LEX “he”  “gave”  “George”  “a hand” 

SYN Noun  Verb  Noun  Noun 

SEM-SYN ANIMATE[N]  TRANSFER[V]  PERSON[N]  OBJECT[N] 

Figure 9.2. Slot-Constraints as Transitions  

To illustrate the problem of construction parsing, we can view each slot as a node, with 

the beginning of a construction the root node (c.f., transition parsing for dependency grammars: 

Zhang and Nivre 2012; Goldberg et al. 2013). A construction's root can occur anywhere in a 

sentence. Each slot-constraint is a state, as visualized in Figure 9.2 with two forms of the 

ditransitive. There are four possible transitions: LEX, SYN, SEM-SYN, STOP. In the first example, the 

slot-constraints are generalized to any transfer verb and any object noun. In the second example, 

the verb and object slots require idiomatic lexical items. The problem is to find the sequence of 

slot-constraints that best represents the construction. From a usage-based perspective, the choice 

between these two representations is an empirical problem and cannot be resolved by 

introspection. 

We first have to develop a pipeline for representing all the possible constraints shown in 

Figure 9.2. Such a pipeline provides our hypothesis space: any sequence of constraints that is 

observed in the training data is a potential construction. First, lexical constraints use word-forms 

separated at whitespace; no morphological analysis is included in the pipeline. The lexicon of 

allowed word-forms is drawn from a background corpus. An example of a lexical slot-constraint 

is given in (2a), where this particular construction requires the specific words “give” and “a 

hand”, as in (2b).  

Second, syntactic representations are drawn from the part-of-speech categories in the 

Universal POS tag set using the RDRPOS tagger (Petrov et al. 2012; Nguyen et al. 2016); this is 
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a pre-defined syntactic ontology. An example of a syntactically-defined slot-constraint is given 

in (2a), in which any noun can fill the subject position. 

Third, semantic constraints are defined using a domain dictionary in which each word-

form is assigned to a cluster of word-forms. Clusters are based on word embeddings. First, a 

background corpus for each language is pos-tagged. No word sense disambiguation is used but 

word-forms are separated by syntactic category (i.e., table_verb is distinct from table_noun). A 

skip-gram embedding with 500 dimensions is trained for each language. Clusters are then formed 

by applying x-means to these embeddings (Pelleg and Moore 2000). These clusters are 

heterogenous syntactically. Each output cluster is further divided by syntactic category so that 

each semantic cluster only contains words from a single part-of-speech, allowing joint semantic-

syntactic constraints. 

Examples of construction representations that are learned in this unsupervised manner for 

shown in Table 9.1. At the top of each example is the construction itself, represented using slot-

constraints. The idea is that any observed utterance which satisfies these constraints counts as a 

token of that construction. Below each representation, then, are tokens or examples that show 

which linguistic material represents that more abstract representation. There is a range of 

constructions here, from very abstract syntactic templates to item-specific phrases. This mixture 

of levels of abstraction is an important feature of usage-based construction grammar. 

Table 9.1. Examples of Constructions and Their Tokens 

[ “very” -- ADJ -- NOUN ] Partially-Idiomatic Adjective Phrase 

(a) very strong link The first example is a partially productive 

adjective phrase which is somewhat 

idiomatic because of the lexical constraint 

requiring “very”. 

   

(b) very powerful tool 

(c) very favorable image 

(d) very good results 

[ DET -- ADJ -- <335> ] Semantically-Defined Noun Phrase 

(a) the vertical organization This example shows a noun phrase that is 

defined by semantic class; the number 

<335> refers to a group of nouns which we 

can see includes “organization” and 

“union”. 

(b) a general consensus 

(c) the European Union 

(d) the local resources 

[ “prepared” -- “to” -- VERB ] Complex Verb Phrase 

(a) prepared to accept This shows a complex verb phrase that is 

lexically defined to contain “prepare” in 

addition to an infinitive verb phrase. 
(b) prepared to assist 

(c) prepared to support 

(d) prepared to act 

[ NOUN -- “funded” -- <335> ] Verb-Specific Semantically-Defined Object 

(a) EU funded project This example shows a lexically-defined 

verb together with an object that is defined (b) state funded organization 
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(c) ARPA funded consortium by semantic class; for simplicity, this is the 

same semantic class used above. (d) EU funded research 

[ NOUN -- AUX -- VERB -- “below” ] Semantic Verb Phrase 

(a) measures are described below This example shows a verb phrase that 

picks up a semantic class even though it 

contains only syntactic and lexical 

constraints; this illustrates the idea of 

competing slot-constraints. 

(b) data is found below 

(c) documents are given below 

(d) framework is suggested below 

[ “who” -- AUX -- VERB ] Relative Clause 

(a) who are involved This example shows a relative clause, 

defined using a lexical constraint for “who”; 

there are no semantic constraints so that this 

is a highly abstract construction. 

(b) who are inconvenienced 

(c) who is paying 

(d) who had forgotten 

[ ADJ -- NOUN -- “are” -- VERB -- “by” ] Partial Passive Main Clause 

(a) nutritive requirements are covered by This example shows a passive main clause, 

not complete in the sense that the passivized 

agent after “by” is not included in the 

construction representation itself. 

 

(b) alcoholic drinks are characterized by 

(c) veterinary registrations are completed by 

(d) internal policies are influenced by 

This section has reviewed work on representing constructions from an unsupervised and 

usage-based perspective. Rather than use introspection to define slot constraints, we instead start 

by generating these potential constructions: potential because not every possible representation 

has been entrenched for any given speaker. The idea here is to capture exposure from corpus 

data: what potential constructions has the learner been exposed to? But this still leaves us with a 

problem: now we need to select some of the representations (as entrenched) and discard others 

(as not entrenched). The next section considers how we can model the selection or competition 

between constraints from a computational perspective. 

 

3 A Computational Theory of Usage-Based Grammar 

Given a very large number of potential constructions like these, how do we model which 

specific ones best generalize the usage that we observe in a corpus? In other words, what is the 

relationship between exposure to potential constructions in a corpus and the emergence of 

grammatical structure? This section is where we implement a theory of usage-based grammar 

that faces the same challenge that language learners face: selecting which constructions to 

remember and use for generalization. This section draws on previous work that implements 

multiple hypotheses about usage-based grammar and compares them experimentally. For the 

sake of space, we focus on one particular theory, an algorithm that uses association values 

(specifically, the ΔP: Ellis 2007; Gries 2013; Dunn 2018b) to measure relationships between 

slots fillers. The basic idea is that representations with higher association values are more 

entrenched in the grammar. 
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An overview of our model of usage-based construction grammar is shown in Figure 9.3. 

The first step is to search through potential constructions, using ΔP as part of an algorithm to 

evaluate and discard poor representations. This creates a large but manageable pool of plausible 

constructions. The second step is to search through potential CxGs, where each potential CxG is 

a constructicon made up of constructions acquired in the first step. We use the Minimum 

Description Length paradigm (MDL: Rissanen 1978, 1986; Goldsmith 2001, 2006) to model 

usage-based grammar as part of this search. The MDL metric quantifies the trade-off between 

memory (operationalized as the encoding size of a grammar) and computation (operationalized 

as the encoding size of a test corpus given that grammar). In other words, any item-specific or 

idiomatic construction could be memorized, but that kind of storage comes at a cost. The final 

step is to evaluate the best grammars on held-out data. In this case, because we are working with 

large corpora, we retain five independent out-of-sample evaluation sets. This kind of design 

ensures that we do not over-fit a particular segment of a corpus. 

 

Figure 9.3. Overview of Computational CxG Model 

 

3.1 Searching for Constructions 

The first part of the model, the association-based algorithm in Table 9.2, uses the total 

directional ΔP (a sum across all transitions) to evaluate potential sequences of constraints. To 

implement this idea, the search follows transitions from one slot-constraint to the next, 

proceeding left-to-right through the sentence. Any transition below a threshold ΔP stops that line 

of the search. This algorithm references local association values when choosing a transition from 

the current state. It also references global (i.e., construction-wide) association for selecting 

different paths, rather than using the frequency of specific templates (c.f., the frequency-based 

algorithm described in Dunn 2019b). 

 

 

 

 

Evaluate on 
Held-out Data

Search for 
Grammars

(MDL)

Search for 
Constructions

(ΔP)
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Table 9.2. Association-Based Selection Algorithm 

Variables 

node = unit (i.e., word) in line 

startingNode = start of potential construction 

state = type of slot-constraint for node 

path = route from root to successor states 

[c] = list of immediate successor states 

ci, ci+1 = transition to successor constraint 

candidateStack = plausible constructions 

evaluate = maximize sum(ΔP for ci, ci+1  in path) 

Main Loop 

for each possible startingNode in line: 

     RecursiveSearch(path = startingNode) 

evaluate candidateStack 

Recursive Function 

RecursiveSearch(path): 

      for ci, ci+1  in [c] from path:  

           if ΔP of ci, ci+1 > threshold: 

                 add ci, ci+1  to path 

                 RecursiveSearch(path) 

           else if path is long enough: 

                 add to candidateStack 

Any series of constraints identified by this search whose transitions exceed the ΔP 

threshold is added to the candidate stack. At the end of the search, this stack is scored using each 

candidate's total ΔP across all transitions. While primarily a transition-based parse, this approach 

thus incorporates some global evaluation methods (c.f., Nivre and McDonald 2008; Zhang and 

Clark 2008). A grid search for the best ΔP threshold per language is performed using 

independent test data (the corpora used for these experiments is described further in Sections 4 

and 5). 

This association-based algorithm is less influenced by the assumption that co-located 

slots govern one another's constraints. For example, in reference to Figure 9.2, the slot filled by a 

noun in 3 and the slot filled by “a hand” in 4 have a local transition that is measured using the 

association between these two representations. Should we instead ignore the relationship 

between these two objects and focus on the relationship between each object and the verb slot? 

This algorithm tries to avoid specifying particular templates like this (i.e., a verb-centered frame) 

by using the global ΔP evaluation and the thread of associations to draw out these relationships.  

But this raises an interesting empirical question: does the entrenchment of the ditransitive 

construction predict a higher association between the two object slots whether or not the verb 

itself is included? Is there a shared effect across all double-object constructions? A beam-search 

dependency parser could resolve this in a practical sense by simply evaluating more non-local 

relationships. But does CxG itself predict that such local relationships will be more entrenched 

because they are present within a single construction? This is the kind of question that becomes 

important when we develop a fully specified theory of construction grammar. 
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3.2 Searching for grammars 

The second part of the algorithm uses Minimum Description Length and a tabu search to 

explore the space of possible CxGs. The process of searching over selected slot-constraints using 

a tabu search (Glover 1989, 1990) is adopted from previous work (Dunn 2018a). A tabu search is 

a meta-level heuristic search that evaluates a number of possible local moves for each turn and 

then makes the move which produces the best grammar. Importantly, a tabu search allows moves 

which make the grammar worse in the short-term (with a restricted set of tabu moves) so that the 

learner can climb out of local optima. Here, each state is a grammar that contains a specific set of 

constructions (i.e., a constructicon). The search works by taking a series of turns. During each 

turn, some constructions are learned (added to the constructicon) or unlearned (removed from 

the constructicon). 

A grammar that provides better generalizations will allow the test corpus to be encoded 

using a smaller number of bits. The metric combines three encoding-based terms: L1 (the cost of 

encoding the grammar), L2{C} (the cost of encoding pointers to constructions in the grammar), 

and L2{R} (the cost of encoding linguistic material that is not in the grammar and thus cannot be 

encoded using a pointer). A pointer here is a partial parse of an utterance that refers to a 

construction that is already contained in the grammar.  

These terms represent the grammar, the data as described by the grammar, and the data 

that is not described by the grammar; note that both L2 terms are combined below. In other 

words, L2(D|G) is the sum of both L2{C} and L2{R}. D in this equation refers to the data set 

which is used to evaluate the model. The point is that the MDL metric is trying to minimize the 

combination of memory (L1) and descriptive adequacy (L2). 

 

Encoding size, in turn, is based on probability: the encoding size of an item, X, is 

measured in bits, below, using the negative log of its probability. We describe how probabilities 

are estimated later in this section. The basic idea is that more probable constraints should have 

smaller encoding sizes. In other words, more entrenched items should be easier to retrieve. 

 

According to this model, a construction is only worth remembering if its contribution to 

decreasing the overall encoding size of the test corpus is smaller than its contribution to the 

encoding size of the grammar. This is important for CxGs because similar constructions overlap, 

describing the same sentences in the corpus. Each overlapping construction must be individually 

represented in the grammar, adding to the L1 term: similar constructions must be encoded 

separately in L1 but do not improve the encoding of L2. For example, the two constructions in 

(1a) and (2a) describe the same utterance in (2b). Both of these constructions need to be encoded 

in the grammar, increasing L1. But encoding only one of them would not increase the regret 

portion of L2 because the utterance itself can still be encoded using a pointer to the construction 

that is in the grammar. 
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The encoding size of a grammar, L1, is the sum of the encoding size of all constructions 

in that grammar. Each construction is a series of slot-constraints that must be satisfied for a 

linguistic utterance to be an instance of that construction. For each constraint, two items must be 

encoded: (i) the constraint type (lexical, semantic, syntactic) and (ii) the filler which defines that 

constraint. 

The cost of (i) is fixed because each representation is considered equally probable: the 

grammar is not explicitly biased towards syntactic constraints. But the cost of (ii) depends on the 

type of representation: syntactic units come out of a much smaller inventory, so that any given 

part-of-speech is more probable and thus easier to encode. For example, if there are 14 parts-of-

speech, then the probability of observing one of them is 1÷14 =  0.0714 bits. On the other hand, 

because there are more lexical items, each word is less probable and thus more expensive to 

encode. For example, if there are 50k lexical items, then the probability is 1÷50,000 =  0.00002. 

In this way, the grammar is allowed to employ item-specific slot-constraints, but doing so 

increases the encoding cost of the grammar. Here, a syntactic constraint contributes 3.8 bits but a 

lexical constraint contributes 15.6 bits. The total encoding size of a construction is the 

accumulated bits required to encode each slot-constraint, where NR represents the number of 

representation types (here, 3) and TR represents the number of possible slot-fillers for that type. 

 

The encoding size of the test corpus, L2, contains two quantities: first, the cost of 

encoding pointers to constructions in the grammar; second, the cost of encoding on-the-fly any 

parts of the corpus that cannot be described by the grammar. The cost of encoding pointers is 

also based on probabilities, so that more probable or common constructions require fewer bits to 

encode. For example, a construction that occurs 100 times in a corpus of 500k words has a 

pointer encoding size of 12.28 bits, but a construction that occurs 1,000 times costs only 8.96 bits 

per use. In this way, the probability of potential constructions influences encoding size. The 

regret portion of the L2 term is the cost of words which are not covered by constructions in the 

current grammar. Each of these is encoded on-the-fly (i.e., not remembered): the more 

unencoded words accumulate, the more each one costs. 

There is a close relationship between MDL and Bayesian inference methods (c.f., Barak 

et al. 2016; Barak and Goldberg 2017; Goldwater et al. 2009). Information theory describes the 

relationship between the log probabilities of representations and their encoding size. But it does 

not estimate the probability of the grammar itself, which here is handled in two ways: First, there 

is a choice in CxG between different types of representation (LEX, SYN, SEM). This model does 

not enforce one type, but syntactic constraints are more likely because there are fewer categories. 

Second, pointers to constructions are assigned probabilities based on their observed frequency; 

this means that more likely constructions are cheaper to encode and implicitly favored by the 

model. 

It is worth pausing at this point to think about what we have done here. Most linguistic 

theories are under-specified, in the sense that there are important details missing. What we have 

presented is a theory of usage-based construction grammar in which every necessary detail is 

made falsifiable and replicable. Our implementation of the MDL metric calculates the 
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relationship between a given grammar and a given corpus. The data3 and the code4 for these 

experiments are both available for replication. This level of detail is required for a fully-specified 

linguistic theory. At the same time, the details of the model are subject to empirical evaluation 

and improvement. This cycle of rapid and direct empirical evaluation is what makes the 

computational paradigm so promising. 

3.3 Evaluating Grammars 

At this point we turn to the evaluation of these usage-based grammars. We evaluate the 

association-based model that we have described here with an alternate frequency-based model 

(Dunn 2019b). The basic idea is that we evaluate these different hypotheses on the same test 

data, using the same representation pipeline, using the same implementation of the MDL metric. 

While we have not evaluated counter-factuals for every development decision made within the 

pipeline, both competing models rely on the same decisions. This gives us a measure of the 

relative quality of each hypothesis. The measure is relative in the sense that we can only compare 

implemented models. 

MDL provides a single metric of a grammar's fit relative to a particular data set. This 

metric itself is dependent on each data set; we thus calculate a baseline encoding score that 

represents the encoding of the data set without a grammar and use this to derive a compression 

metric: MDLCxG/MDLBase. The lower this compression metric, the greater the generalizations 

provided by the CxG. Compression as used in MDL is similar to perplexity within language 

modelling. 

The evaluation uses all seven languages in order to provide a cross-linguistic counter-

factual: do the generalizations agree across languages? Additionally, we evaluate the theories 

against five independent sets of 10 million words for each language. Table 9.3 shows the average 

compression by model for each language across these five test sets. We also report the p-values 

for a paired t-test (paired by data set) to ensure that the difference in compression between 

theories is significant. 

Table 9.3. Compression Rates by Language with Significance of Difference Between Models 

Language Frequency Association P 

Arabic  44.08% 29.45% 0.0001 

German 52.49% 18.69% 0.0001 

English 51.80% 23.11% 0.0001 

French 43.28% 40.52% 0.0037 

Portuguese 45.13% 38.91% 0.0137 

Russian  54.14% 13.93% 0.0001 

Spanish 60.34% 26.36% 0.0001 

Lower compression scores reflect better generalizations; as shown in Table 9.3, the 

association-based model out-performs the frequency-based model for every language. In each 

case the difference between models is significant. The gap and the significance level, however, 

vary across languages. For Russian, there is a gap of 40.21% compression that is significant 

 
3 https://publicdata.canterbury.ac.nz/Research/NZILBB/jonathandunn/CxG_Data_FixedSize/ 
 
4 https://github.com/jonathandunn/c2xg  

https://publicdata.canterbury.ac.nz/Research/NZILBB/jonathandunn/CxG_Data_FixedSize/
https://github.com/jonathandunn/c2xg
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below the p = 0.0001 level. But for French and Portuguese that gap is only 2.76% and 6.22%, 

with larger p-values to match. Association always provides a better model of the emergence of 

slot-constraints, but for French and Portuguese the two models are much closer together than for 

other languages. 

What do these experiments tell us about usage-based construction grammar? First, it 

could have been the case that there is variation across languages and across data sets. In other 

words, maybe a frequency-based grammar best describes one language (i.e.,. English) but not 

another (i.e., German). Instead, we see a very robust result in which each of five independent 

evaluation sets for each of seven languages shows the same result. This scale of experimentation 

holds our theories to a high standard and gives us confidence that we are making generalizations 

about language rather than a simple description of one language’s constructicon. Second, this 

gives us strong evidence that frequency-alone is not sufficient for usage-based grammar: 

infrequent constructions can still be acquired. Thus, a theory of usage-based grammar that 

depends on frequency as its main descriptive mechanism is incorrect. 

 

4 Working with Digital Language Data 

This section examines sources of demographic bias in gigaword corpora and how these 

biases can be corrected. This is important because computational experiments rely on large 

digital data sets. In other words, it is possible that although the scale and precision of these 

experiments is very robust, the findings do not reflect actual language use. The goal of this 

section is to justify the validity of these data sets as a source of linguistic experiments. 

We are working with the Corpus of Global Language Use (CGLU: Dunn 2020), a 

collection of over 420 billion words across 295 languages and 189 countries. The goal of this 

corpus is to systematically gather comparable language samples from every country in the world. 

The expectation is that some languages (e.g., Swahili) will be found only in certain regions of the 

world. Other languages (e.g., English and French) will be found in all regions and, as a result of 

their geographic distribution, will participate more widely in different language mixing 

situations. Countries are grouped into sixteen larger geographic regions to simplify the analysis 

of language distribution. The distribution of the corpus across regions by number of words and 

by percentage of words is shown in Table 9.4. The corpus draws on web data and social media 

data, two different forms of digital language use. The inventory of regions is relatively straight-

forward. It is worth noting, however, that Brazil and Russia are large enough and produce 

enough language data that they are separated from surrounding countries. 
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Table 9.4. Words Per Region 

 CGLU v.4.2 Twitter 

Region Words % Words % 

Africa, North 1,223,532,000 0.29% 311,577,000 2.38% 

Africa, Southern 26,868,000 0.01% 261,431,000 2.00% 

Africa, Sub 5,938,870,000 1.39% 786,718,000 6.01% 

America, Brazil 2,265,386,000 0.53% 291,254,000 2.23% 

America, Central 8,877,634,000 2.08% 1,249,076,000 9.55% 

America, North 51,921,657,000 12.15% 756,306,000 5.78% 

America, South 22,441,384,000 5.25% 1,508,749,000 11.53% 

Asia, Central 17,069,517,000 4.00% 311,615,000 2.38% 

Asia, East 49,521,933,000 11.59% 579,847,000 4.43% 

Asia, South 15,147,872,000 3.55% 937,978,000 7.17% 

Asia, Southeast 21,386,781,000 5.01% 678,805,000 5.19% 

Europe, East 65,413,609,000 15.31% 898,885,000 6.87% 

Europe, Russia 15,363,644,000 3.60% 247,415,000 1.89% 

Europe, West 143,748,386,000 33.65% 2,928,220,000 22.39% 

Middle East 1,721,856,000 0.40% 800,238,000 6.12% 

Oceania 1,743,571,000 0.41% 530,804,000 4.06% 

TOTAL 423 billion 100% 13 billion 100% 

 

The number of words for a given region depends on more than simply the population of 

the region: (i) the number of sites indexed by the Common Crawl; (ii) the population’s degree of 

access to internet technologies; (iii) data cleaning decisions for this project that are subject to 

future improvements (i.e., identifying words across different writing systems). Although the 

relationship between words in the corpus and individuals in the regions is imperfect, in the 

aggregate this data set can still be used to infer many things about language use around the 

world. The relationship between populations and digital language data is explored further in 

Section 5. 

A computational approach to building digital corpora has three main steps, as shown in 

Figure 9.4 below: finding the data (i.e., crawling or using an API), cleaning the data (e.g., to 

remove duplicate text), and sorting the data by language (i.e., language identification). These 

steps are discussed in more detail elsewhere (Dunn 2020; Dunn and Adams 2020), but an 
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overview is given here. A Python package is available for cleaning5 and for language 

identification.6 An interactive visualization for exploring the corpus is also available.7 

 

 

Figure 9.4. Steps in Creating Digital Corpora 

This section presents the decisions made for processing the raw web data, as an example 

of what is required for working with this kind of data. Language samples are geo-located using 

country-specific top-level domains: we assume that a sample from a web-site under the “.ca” 

domain is from Canada. This approach does not assume that whoever produced that sample was 

born in Canada or represents a traditional Canadian dialect group. Some countries are not 

available because their top-level domains are used for non-geographic purposes (i.e., “.ai”, 

“.fm”, “.io”, “.ly”, “.ag”, “.tv”). Domains that do not contain geographic information are also 

removed from consideration (e.g., “.com” sites). An important improvement in CGLU v.4.2 is 

the inclusion of geographic TLDs that are not in a Latin script; this significantly increases the 

amount of data from languages like Hindi, Urdu, and Chinese that is collected. A complete list of 

TLDs is contained in the codebase. We evaluate the correspondence between this data and 

population demographics (in Section 5) as well as the linguistic similarity between geographic 

data drawn from different sources (in Section 6). The basic idea is that we can validate this kind 

of corpus by triangulating multiple sources to measure linguistic and demographic similarity. For 

example, if dialectal features in Twitter data correspond with dialectal features in traditional 

survey-based studies, this helps to validate the collection of Twitter data as a representation of 

local language use (Grieve et al. 2019). 

The raw portions of the Common Crawl data set used to build the corpus are shown in 

Table 9.5, for the purpose of showing the scale of the task. The corpus uses every portion of the 

crawl from March 2014 to June 2019, totaling 147 billion web pages in total. No temporal 

divisions are included in the corpus because these dates represent the time of collection rather 

than the time of production: web data does not expire and there is a long-tail in which the same 

samples are observed multiple times across different periods. Deduplication can remove this 

long-tail but cannot add accurate time information. 

 
5 https://github.com/jonathandunn/common_crawl_corpus  
6 https://github.com/jonathandunn/idNet  
7 https://www.earthlings.io  

Collection Cleaning Language ID

https://github.com/jonathandunn/common_crawl_corpus
https://github.com/jonathandunn/idNet
https://www.earthlings.io/
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Table 9.5. Common Crawl Raw Data Size 

Year Period Represented (Months) Pages 

2014 March to December (8) 22.53 billion 

2015 January to December (10) 17.98 billion 

2016 January to December (9) 16.91 billion 

2017 January to December (12) 37.28 billion 

2018 January to December (12) 36.30 billion 

2019 January to June (6) 16.05 billion 

Total 64 months 147.05 billion 

In isolation, web-crawled data provides a single observation of digital language use. 

Another common source of data is from Twitter (e.g., Grieve et al. 2019). We can use a baseline 

Twitter corpus as a point of comparison: does the Common Crawl agree with Twitter data? For 

example, recent work has shown that there is systematic agreement between geo-referenced 

corpora from the web and from Twitter across nine languages (Dunn 2021). In other words, the 

more precise geo-location of tweets enables us to confirm the less-precise geo-location of web 

data. We use a spatial search to collect Tweets from within a 50km radius of 10k cities taken 

from the GeoNames project.8 This search method avoids biasing the selection of languages by 

relying on language-specific keywords or hashtags. The same deduplication and text cleaning 

methods are used as for the main web-crawled corpus. Because the language identification 

component only has reliable predictions for samples with at least 50 characters, a threshold of 50 

characters is enforced after cleaning has taken place. The break-down of this cleaned comparison 

corpus by region is shown in Table 9.1 in Section 1; this represents two years of collection (July 

2017 to July 2019). 

 

Figure 9.5. Map of Web Corpus 

 

The geographic distribution of the web corpus (by number of words per country) is 

shown in Figure 5; the distribution of the Twitter corpus is shown in Figure 9.6. The purpose of 

these maps is to provide a first pass at understanding where digital language data comes from. 

Why is this important? Recent work (Dunn and Adams 2019, 2020) has shown that a naïve 

corpus from these sources will over-represent North America and Western Europe. Thus, the 

danger is that our experiments are replicating the same geographic bias that is found in 

traditional dialectology studies (e.g., focusing on the US, the UK, France, etc.). Further, this 

work has shown that there is a significant linguistic difference between models trained on data 

from different countries, which means that geographic bias in our corpora could lead to bias in 

the experiments that we conduct using these corpora (c.f., Section 3). We examine this question 

further in the next section. 

 
8 https://www.geonames.org  
 

http://www.geonames.org/
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Figure 9.6. Map of Twitter Corpus 

 

The problem of language identification is often overlooked in linguistics, where language 

identity is taken as a given. First, what languages are distinct enough to require their own label? 

Second, how do we identify each language with sufficient accuracy? This corpus depends on 

idNet, a multi-layer perceptron model for language identification that covers 464 languages. 

Importantly, this model draws evaluation samples from over a dozen different registers. Previous 

work has focused on registers like Bible translations, which allow parallel data across many 

languages. But register variation within languages means that language use in a Bible translation 

may be significantly different than language use in other contexts. For our purposes, a rigorous 

held-out evaluation of idNet (Dunn 2020) shows that it is able to make highly accurate 

predictions about language labels across many registers. 

 

5 Population Demographics and Digital Language Data 

As soon as we try to use computational linguistics to tell us about people or languages we 

need to evaluate how well the data that we are using actually represents our object of study. The 

computational experiments in this chapter use digital corpora to study the role of exposure in 

language learning and language variation. But the data that we use to represent usage needs to be 

validated. In other words, the more we use digital corpora for scientific purposes, the more we 

need to control for bias in that data. In Section 6 we use digital corpora to represent geographic 

variation, so that it is essential to understand the relationship between this language data and the 

underlying communities we are trying to represent. There are three sources of bias that we need 

to take into account. 

First, production bias occurs when one location (like the US) produces so much digital 

data that most corpora over-represent that location (Jurgens et al. 2017). For example, by default 

a corpus of English from the web or Twitter will mostly represent the US and the UK. It has been 

shown that this type of bias can be corrected using population-based sampling (Dunn and Adams 

2020) to enforce the representation of all relevant populations. 

Second, sampling bias occurs when a subset of the population produces a 

disproportionate amount of the overall data. This type of bias has been shown to be closely 

related to economic measures: more wealthy populations produce more digital language per 

capita (Dunn and Adams 2019). By default, a corpus will contain more samples representing 

wealthier members of the population. Thus, this is similar to production bias, but with a 

demographic rather than a geographic scope. 

Third, non-local bias is the problem of over-representing those people in a place who are 

not from that place: tourists, aid workers, students, short-term visitors, etc. For example, in 

countries with low per-capita GDP (i.e., where local populations often lack internet access) 

digital language data is likely to represent outsiders like aid workers. On the other hand, in 

countries with large numbers of international tourists (e.g., New Zealand), data sets are likely to 

instead be contaminated with samples from these tourists. 

Of these three sources of bias, non-local bias is the most difficult to uncover. We can 

identify production bias when the amount of data per country exceeds that country's share of the 
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global population. In this sense, the ideal corpus of English would equally represent each country 

according to the number of English speakers in that country. Within a country, we can measure 

the amount of sampling bias by looking at how economic measures like GDP and rates of 

internet access correspond with the amount of data per person. Thus, we could use median 

income by zip code to ensure that the US is properly represented. But non-local bias is more 

challenging because we need to know which samples from a place like New Zealand come from 

those speakers who are only passing through for a short time. Such speakers would not be 

representative of New Zealand English as a dialect. 

Only with widespread restrictions on international travel during the COVID-19 pandemic 

do we have access to a collection of digital language from which non-local populations are 

largely absent (Gössling et al. 2020; Hale et al. 2020). This section uses changes in linguistic 

diversity during these travel restrictions, against a historical baseline, to calibrate the collection 

of digital corpora. This is a part of the larger problem of estimating population characteristics 

from digital language data and removing the bias that could impact our use of computational 

experiments. 

The first question is the degree to which the production of this data is driven by 

underlying populations (potential production bias) and by demographic factors like GDP 

(potential selection bias). These experiments are based on the Twitter portion of the data 

described above, because this data comes with more reliable temporal meta-data. We start, in 

Figure 9.7, by looking at the relationship between each country's population and share of the 

corpus. Each country is an observation that is represented by its average monthly data production 

and several demographic factors. Overall, there is a very significant correlation (Pearson) 

between population and the amount of data from each country (0.46). Thus, the number of 

people in a country is an important factor explaining how much data that country produces. 

While this is significant, however, it also means that there are many other factors that influence 

the geographic distribution of the data. 

 

Figure 9.7. Demographic Factors and Digital Corpora 

 

To better understand the factors influencing the geographic distribution of the data, we 

work with three variables: population, the number of people in each country; internet population, 

the number of internet users in each country; and GDP, a measure of each country's economic 

output (United Nations 2011, 2017a, 2017b). Figure 9.7 shows three regression plots in which 

these variables (on the y axis) are compared with the average monthly data production per 

country (given in number of tweets per month on the x axis).  

In each case, there is a close relationship between data production and demographics, 

with several extreme outliers. For population, the outliers are China and India. Both are highly 

populated countries with significantly lower than expected data production (especially China). 

Both countries have relatively low rates of internet access: 38% for China and 11% for India; this 

lowers the total population in each country. Thus, although the populations are quite large, most 

of the population is not able to produce digital language data. For the influence of GDP, the 

outliers are the US and China. For the US, in particular, the GDP is quite high: there seems to be 

a ceiling after which increased GDP is unlikely to influence digital behaviors. Further, that GDP 
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is not evenly distributed across the entire population. For the influence of internet access, the 

outliers are again China and the US. With a few notable exceptions there is a relatively close 

relationship between data production and the demographic factors of each country. 

With these three outliers removed (the US, China, India), there are very significant 

correlations between these three variables and the geographic distribution of the data: 0.46 

(population), 0.61 (population with internet access), and 0.59 (GDP). This leaves some 

unexplained production factors. The most obvious missing factor here is social media platforms 

specific to given countries (e.g., Sina Weibo). These alternative platforms will siphon away 

enough users to distort the representation of a population given access only to other platforms. 

Further, Twitter is banned in China: because only some companies are allowed to use it through 

specific VPNs, the text is not representative of language use in China. Casual users of Twitter 

will use a VPN through another country which would distort this method of data collection. 

Regardless, this shows that we can explain a significant portion of the geographic 

distribution of the data. This is important because we want to describe populations by observing 

digital corpora. If there is no relationship between the two in terms of distribution, it is difficult 

to make such inferences. What we have seen, however, is that there is a very significant 

relationship. What is the required threshold for establishing a relationship like this? We should 

think about this as a metric for evaluating digital corpora: data with a stronger relationship to 

demographic variables are more representative. 

We measure linguistic diversity as a probability distribution over languages for each 

country. Given this probability distribution for each country, we compare countries using the 

Herfindahl-Hirschman Index (HHI). The HHI was developed in economics to measure market 

concentration: the more of a given industry is dominated by a small number of companies, the 

higher the HHI (Hirschman 1945). The measure is derived using the sum of the square of shares, 

in this case the share of each language in each country. 

Table 9.6. Sample Language Distributions by Country 

 Israel India United States 

HHI 0.207 0.356 0.852 

Language #1 27.3% 50.8% 92.3% 

Language #2 25.9% 30.8% 02.6% 

Language #3 23.5% 03.4% 00.6% 

Language #4 07.5% 02.5% 00.6% 

Language #5 05.3% 01.4% 00.4% 

Thus, the HHI is higher when the distribution is centered around just a few languages. 

For example, in Table 9.6 we focus on three countries that show a range of linguistic diversity: 

Israel, India, and the US. Israel has the lowest HHI (0.207). Looking at the share of the top five 

languages, we see roughly equal usage of three languages (in the 20s) followed by two 

significant minority languages. This lower HHI reflects the fact that a number of languages are 

being used together: no language has a monopoly. On the other extreme, the US has one of the 

highest values for HHI (0.852). There is one very dominant language (92%), one significant 

minority language (2.6%), and a number of very insignificant languages. English has a 

metaphoric monopoly on the linguistic landscape of the US. Global variation in linguistic 

diversity on Twitter is shown in Figure 9.8. 
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Figure 9.8. Map of Linguistic Diversity on Twitter, using the HHI 

 

The point of measuring linguistic diversity is to evaluate changes over time: to what 

degree do countries change during travel restrictions resulting from COVID-19? The point here 

is that, if Twitter is representing non-local populations, we should see a shift in diversity during 

travel restrictions. Models of this kind of bias can then be used to correct for that bias and make 

digital corpora align more closely with population demographics. We have a measure of 

diversity (the HHI) and data collected by month. The basic approach is to create two groups of 

samples: first, months during the pandemic (March through August, 2020); second, months not 

during the pandemic (March through August, 2019). These two groups are aligned by month so 

that seasonal fluctuations are taken into account (e.g., tourism high season in February for New 

Zealand and in July for Italy). Given these two groups of samples, we use a t-test for two 

independent samples to determine whether these groups are, in fact, different. If we reject the 

null hypothesis, it means that linguistic diversity during travel restrictions is significantly 

different than the seasonally-adjusted baseline.  

 

Figure 9.9. Countries with Changes to Linguistic Diversity During Travel Restrictions, By P-

Value 

 

The results show that 70 countries have a changed linguistic landscape during the 

pandemic. This is visualized in Figure 9.9, with p-values classed into highly significant (under 

0.001), very significant (under 0.01), and significant (under 0.05). We see, for example, that the 

US and Canada undergo significant change, but not Mexico and South America. There are clear 

geographic patterns in linguistic change: North but not Central or South America; East Africa but 

not West Africa; South/east Asia but not East Asia; Europe but not Russia. 

These significant changes during international travel restrictions show that our measure 

(the HHI) and our data (tweets) offer a meaningful representation of underlying populations. If 

the data did not represent populations, we would not see the relationships examined above. There 

are no random fluctuations in the distribution of the data across countries or in the distribution of 

languages within countries (Dunn et al. 2020). At the same time, given a massive social change 

(i.e., the COVID-19 pandemic), the measure clearly identifies changes in the linguistic 

landscape. Thus, the measure is both precise (not disguised by noise) and accurate (observing 

change where we expect it). The key point is that the change in diversity during the COVID-19 

period is identifiable against the background noise. 

So far we have seen that there is a significant change in the linguistic diversity of many 

countries during the travel restrictions caused by COVID-19. But to what degree are these 

changes related to the travel restrictions themselves? For example, we could imagine a 

population that is changing over time which we just happen to observe in mid-change. It could 

be the case that a country has been becoming less diverse over the past decade because of fewer 

incoming immigrants; the approach taken so far in this paper would misinterpret such macro-

trends to be a direct result of COVID-19. 
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We use a difference-in-differences method (Card and Krueger 1994) to correct for this. 

The basic idea behind a difference-in-differences approach is to conduct a natural experiment 

with a control group (here, data from 2018) and an effect group (here, data from 2020) 

differentiated by time. We have three months (July, August, September) that are shared across 

2018, 2019, and 2020. So, using the same methods described above, we find out which countries 

have a significant change between 2019 and 2020. This is the period that takes place during 

travel restrictions. If travel restrictions influence linguistic diversity, we would expect such 

influence to take place during this period. We then find out if the countries which show a 

significant change in 2020 also show a significant change from 2018 to 2019. This provides a 

baseline: removing any country whose linguistic diversity was already in the process of 

changing. 

Over this three-month period (July through September), 58 countries show a change in 

linguistic diversity during the pandemic. This is a smaller number than the main results reported 

above for two reasons: (i) the time span is shorter, giving less robust results and (ii) this 

particular time span came after some travel had resumed. Of these 58 countries that show a 

significant change in diversity, most (38) show no difference at all in the baseline period before 

the pandemic. Another eight show a much greater difference during the COVID-19 period (e.g., 

p-values of 0.03 vs 0.004 for baseline and COVID-19, respectively). This means that the 

pandemic has either created or has significantly contributed to 79.3% of the cases of changing 

linguistic diversity. The remaining 20.7% of changes, then, must have been created by macro-

trends like immigration or changes in bilingual behaviour. The main conclusion from this 

difference-in-differences examination, however, is that most of these changes can be specifically 

connected to COVID-19. 

The important point in this section has been that, like all sources of language data, digital 

corpora are subject to certain biases. In other words, there is not a perfect relationship between 

the data that our experiments are using and the populations that we want to study. As with all 

data, we need to systematically measure and remove this kind of bias in order to improve how 

well our experiments generalize across global populations. The study presented here is an 

example of what it means to validate this kind of data to take into account production bias, 

sampling bias, and non-local bias. Another approach, based on register variation, is to determine 

if digital language shows the same grammatical and lexical usage as non-digital language. 

Recent work has shown that traditional survey-based methods can be replicated using digital 

corpora (Grieve et al. 2019). Other recent work has triangulated different sources of digital 

corpora to show that they are closely related (Dunn 2021). This body of work is important for 

validating the corpora that our computational experiments depend on. 

 

6 Global Dialectology and Computational Construction Grammar 

So far we have seen how we can conduct computational experiments on theories of 

usage-based construction grammar. This section goes a step further and describes recent 

computational experiments on variation in construction grammars (Dunn 2018c, 2019a, 2019c). 

The goal is to show that a theory of usage-based grammar can also account for variation. In other 

words, a theory of grammar must be tested on its predictions for both language learning and 

language variation because these are essential aspects of language that any theory needs to 

describe. Here the difference between dialects is modelled as the preference for some 
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constructions over others given a single umbrella-grammar. We experiment with the same 

association-based and frequency-based CxGs (c.f., Section 3), this time using their ability to 

make predictions about geographic variation. Thus, we previously evaluated these grammars and 

the theories they represent using internal measures like goodness-of-fit. Here we evaluate these 

grammars and the theories they represent using an external measure based on geographic 

variation: how well is each theory capable of capturing the difference between national dialects 

of a language? 

Previous work on syntactic dialectology has depended on the idea that a grammar is an 

inventory of specific structures: the double-object construction versus the prepositional dative, 

for example. Under this view, there is no language-independent feature set for syntax in the way 

that there is for phonetics. But we can also view syntax from the perspective of a discovery-

device grammar: in this case, our theory of grammar is not a specific description of a language 

like English but rather a function for mapping between observations of English and a lower-level 

grammatical description of English: G=D(CORPUS). Thus, a discovery-device grammar (G) is an 

abstraction that represents what the grammatical description would be if we applied the learner 

(D) to a specific sample of the language (CORPUS). A discovery-device grammar allows us to 

generalize syntactic dialectology: we are looking for a model of syntactic variation, V, such that 

when applied to a grammar, V(G), the model is able to predict regional variation in the grammar. 

But G is different for each language, so we generalize this to V(D(CORPUS)). In other words, we 

use an independent corpus for each language as input to a discovery-device grammar and then 

use the resulting grammar as a feature space for studying syntactic variation. This approach, 

then, produces an inventory of syntactic features for each language in a reproducible manner. 

From the perspective of cognitive linguistics, a usage-based grammar is ideally a discovery-

device grammar. In other words, there is no individual grammar that is not driven by observed 

usage. 

This section uses data-driven language mapping (c.f., Sections 4 and 5) to choose which 

languages in which countries need to be included as national dialects. The seven languages we 

consider account for 59.2% of the web-crawled corpus and 74.6% of the social media corpus. 

The corpora are regionalized to countries. Thus, the assumption is that any country which 

frequently produces data in a language has a national dialect of that language. For example, 

whether or not there is a distinct variety of New Zealand English depends entirely on how much 

English data is observed from New Zealand in these data sets. The models then have the task of 

determining how distinct New Zealand English is from other national dialects of English. 

A Linear Support Vector Machine classifier is used to model dialects. This is a 

supervised method that observes a number of samples (i.e., vectors of construction frequencies 

representing samples from a given country) and estimates a function for mapping that vector into 

a hyperplane maximizing the separation between classes (i.e., national dialects). A Linear SVM 

is preferable to other linear classifiers with inspectable feature weights, such as Naïve Bayes, 

because it can better handle redundant representations. This is important because constructions 

vary in their level of abstraction so that a single utterance may have several constructions 

describing it, producing correlated features. 

Constructions are quantified using their raw frequency; since all samples are the same 

size, this is relative frequency. Thus, the grammar is turned into a vector that contains the 

frequency of each construction in each observed sample. Morphosyntactic dialectometry in this 

paradigm depends on the fact that speakers have a large number of grammatical structures 
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available to them but can only choose a small sub-set of these structures in actual usage. Positive 

evidence for a speaker’s preference is provided by each observed structure and negative evidence 

by each unobserved structure. In terms of cognitive sociolinguistics, an entire CxG can perform 

all of the functions that language is used for. Studying only a few constructions in isolation limits 

the functions that are represented. Thus, even if constructions are chosen because they have 

overlapping functions, this approach (i) may miss constructions that fulfil those same functions 

in other contexts or (ii) may miss some functions that are covered by those constructions in other 

contexts. 

So long as the total choice space is relatively well covered (i.e., so long as the CxG has 

descriptive adequacy), the amount of negative evidence will be much higher than the amount of 

positive evidence. Corpus-based dialectology thus does not require the active elicitation of either 

specific variants or specific minimal pairs: given enough passively observed language use, the 

observed frequency of each structure (the input to the model) supports the estimation of each 

region’s preferences for that structure against its competition (the output of the model). 

True positives occur when the model assigns unseen samples to the correct dialect and 

false positives occur when the model incorrectly assigns a sample to a given dialect. The 

standard measures used to evaluate such an experiment are precision (the proportion of 

predictions for region X that actually belong to region X) and recall (the proportion of samples 

from region X that were correctly classified). The F-Measure reported here is the harmonic mean 

of these two measures averaged across all classes. The overall prediction accuracy across 

languages is shown in Table 9.7 (with the web corpus on the left and the Twitter corpus on the 

right). These scores are computed using cross-validation to protect against over-fitting. Within 

each data set, we compare the prediction accuracy using two different grammars: a frequency-

based theory of CxG and an association-based theory of CxG. This is the same experimental 

comparison that we saw previously. 

Table 9.7. F1 of Classification of Regional Varieties by Language and Grammar Type 

 Web Corpus Twitter Corpus 

 Frequency CxG Association CxG Frequency CxG Association CxG 

Arabic  0.90 1.00 0.88 0.98 

English  0.80 0.96 0.76 0.92 

French  0.78 0.96 0.98 0.98 

German  0.89 0.96 0.90 0.95 

Portuguese  0.98 0.99 0.99 1.00 

Russian  0.79 0.95 0.83 0.93 

Spanish  0.78 0.95 0.82 0.94 

A classification-based approach has the goal of distinguishing between national dialects. 

We would expect, then, that the task of distinguishing between a small number of dialects is 

easier than distinguishing between a larger number of dialects. For example, there are only two 

dialects of German and Portuguese in the Twitter corpus. Models on the web corpus (left) have 

higher predictive accuracy than models on the Twitter corpus (right). This is true except in cases, 

such as Portuguese, where there is a wide difference in the number of national varieties 

represented (for Portuguese, two vs. four). For reasons of data availability, only English and 

Spanish have strictly aligned varieties; in both of these languages, the grammars perform better 
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on the web corpus than the Twitter corpus, although the gap is wider for English than for 

Spanish. 

What does the F-Measure tell us about models of syntactic variation? First, the measure 

is a combination of precision and recall that reflects the predictive accuracy while taking 

potentially imbalanced classes into account: how many held-out samples can be correctly 

assigned to their actual region-of-origin? On the one hand, this is a more rigorous evaluation than 

simply finding a significant difference in a syntactic feature across varieties within a single-fold 

experimental design: not only is there a difference in the usage of a specific feature, but we can 

use the features in the aggregate to characterize the difference between national dialects. On the 

other hand, it is possible that a classifier is over-fitting the training data so that the final model 

inflates the difference between varieties. For example, let's assume that there is a construction 

that is used somewhat frequently in Pakistan English but is never used in other varieties. In this 

case, the classifier could achieve a very high prediction accuracy while only a single construction 

is actually in variation. Before we interpret these models further, we evaluate whether this sort of 

confound is taking place. 

 

Figure 9.10. Unmasking on Web Corpus 

 

If a classification model depends on a small number of highly predictive features, thus 

creating a confound for dialectology, the predictive accuracy of that model will fall abruptly as 

such features are removed (Koppel et al. 2007). Within authorship verification, unmasking is 

used to evaluate the robustness of a text classifier: First, a linear classifier is used to separate 

documents; here, a Linear SVM is used to classify national dialects of a language. Second, for 

each round of classification, the features that are most predictive are removed: here, the highest 
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positive and negative features for each national variety are pruned from the model. Third, the 

classifier is retrained without these features and the change in predictive accuracy is measured: 

here, unmasking is run for 100 iterations using the association-based grammar as features, as 

shown in Figure 9.10 (with the web-based corpus). For example, this removes 28 constructions 

from the model of English each iteration (two for each national dialect), for a total of 

approximately 2,800 features removed. The figures show the F-Measure for each iteration. On 

the left-hand side, this represents the performance of the models with all features are present; on 

the right-hand side, this represents the performance of the models after many features have been 

removed. This provides a measure of the degree to which these models are subject to a few 

highly predictive features. 

There is a relationship between the rate of decline and the number of national dialects 

included in the model. What we see, however, is that the performance is not showing the steep 

decline that we would expect if these results were an artifact. The purpose of this evaluation is to 

show that a classification approach to dialectology is not subject to the confound of a small 

number of highly predictive features. 

The point of this section has been to extend our theory of usage-based grammar to 

geographic variation. The work discussed here shows that the same computational grammars 

learned in Sections 2 and 3 can be used to identify dialect membership on held-out testing data 

with a high degree of accuracy. In other words, we are evaluating predictions not only about 

what constructions are learned but also which constructions are favored by each national dialect. 

This is significant because the scale of these experiments covers seven languages and dozens of 

national dialects, so that our theory of usage-based grammar is tested in many different contexts. 

A rigorous experimental paradigm shows, again, that an association-based grammar makes better 

predictions than a frequency-based grammar, across all languages and data sets. These models do 

not depend on a few highly predictive constructions. This set of experiments is important as yet 

another piece of evidence that we can use to test our linguistic theories: a fully specified theory 

of usage-based grammar that covers both language learning and language variation. 

 

7 Computational Cognitive Linguistics 

This paper has presented work that shows how a computational model of usage-based 

grammar provides a fully replicable and falsifiable theory that can be evaluated against corpora. 

Our experiments show that association is more important than frequency for learning 

generalizations. What makes this work important is its scale: these findings are robust on out-of-

sample experiments across seven languages. One potential weakness in the computational 

paradigm is the kind of language data that we are forced to rely on (written digital texts). We 

know, however, that all sources of data are subject to bias; Sections 4 and 5 have worked to 

measure and correct for the bias present in digital corpora. The result is a robust and fully-

specified (i.e., falsifiable) theory of usage-based grammar that extends from language learning to 

language change. 

What does this line of work mean for cognitive linguistics? First, it is clear that this 

theory of usage-based grammar looks somewhat different from existing theories (Langacker 

2008; Goldberg 2006). The main difference is that a fully falsifiable linguistic theory must be 

expressed with much greater mathematical precision. Every concept must be defined in a 
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computable manner, rather than using human intuition and metaphoric terminology. Second, the 

level of abstraction here is significantly higher than in traditional linguistic argumentation. In 

other words, specific constructions like the dative or the ditransitive are not, themselves, directly 

specified or enumerated. This theory of usage-based grammar is by necessity a discovery-device 

grammar, in the sense that any given grammar (i.e., description of a language) exists only in 

relationship to the corpus that it is describing. Thus, the theory in fact covers all languages and 

all dialects, although here it is evaluated on only seven languages. 

This is the beginning and not the final formulation of computational cognitive linguistics. 

There are many remaining weaknesses and many missing components. These can be addressed 

by continued rigorous empirical evaluation. For example, there have also been computational 

theories of metaphor that implement and evaluate predictions about metaphor in the same way 

that this paper has worked with construction grammar (Dunn 2013a, 2013b, 2013c, 2014a, 

2014b, 2015a, 2015b). However, there is currently no overlap between a computational theory of 

construction grammar and a computational theory of metaphor, an obvious area for future 

research. After all, constructions are form-meaning mappings which interact with metaphor 

(Sullivan 2013). A better theory of computational cognitive linguistics would make predictions 

about (1) the entrenchment of constructions, (2) geographic variation in construction usage, and 

(3) where and how metaphors can be expressed in specific constructions. But the underlying idea 

is the same: to formalize linguistic theory as a computational model and evaluate the theory’s 

predictions on held-out testing data. 
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