Predicting Embedding Reliability in Low-Resource Settings

Dunn, J.; Li, H.; & Sastre, D. (2022). “Predicting Embedding Reliability in Low-Resource Settings Using Corpus Similarity Measures.” In Proceedings of the 13th International Conference on Language Resources and Evaluation. European Language Resources Association.


This paper simulates a low-resource setting across 17 languages in order to evaluate embedding similarity, stability, and reliability under different conditions. The goal is to use corpus similarity measures before training to predict properties of embeddings after training. The main contribution of the paper is to show that it is possible to predict downstream embedding similarity using upstream corpus similarity measures. This finding is then applied to low-resource settings by modelling the reliability of embeddings created from very limited training data. Results show that it is possible to estimate the reliability of low-resource embeddings using corpus similarity measures that remain robust on small amounts of data. These findings have significant implications for the evaluation of truly low-resource languages in which such systematic downstream validation methods are not possible because of data limitations.

Supplementary Material

corpus_similarity Package